Universität Dortmund

FACHPRÜFUNG

MASCHINENELEMENTE

23.08.2006 - 08:30 bis 12:30 Uhr (4 Stunden)

Bearbeiter:		
MatrNr. :		
Umfang: Maschinenelemente I, II, III	(200 Punkte)	$\Sigma = 200 \text{ Punkte}$

Die Klausur ist bestanden, wenn mindestens 80 Punkte erreicht wurden.

Hinweise zur Bearbeitung:

- > Alle Blätter sind mit dem Namen und der Matrikel-Nr. zu beschriften. Bei fehlender Beschriftung werden die Aufgaben ggf. nicht bewertet.
- > Alle Aufgaben sind auf den Aufgabenblättern zu bearbeiten. Zusätzliche Blätter sind beim Aufsichtspersonal erhältlich.
- Zugelassene Hilfsmittel: Keine (außer Taschenrechner, Schreib- und Zeichenwerkzeug)

Bewertung: (Nicht vom Bearbeiter auszufüllen)

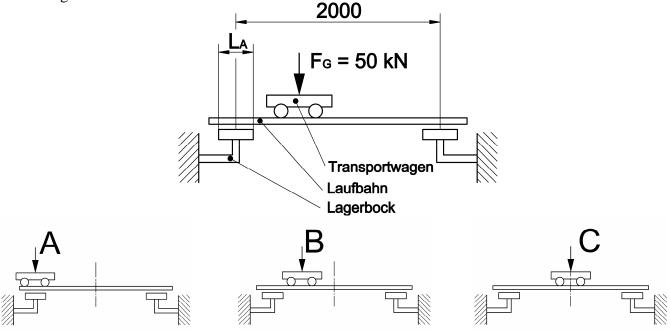
E VE	E AW	E WN	E WL	E GL	E NT	E FE	E SW	E SR	E ZR	E RK	E KB	E FÜ	E GG	Σ
P _{max}	P _{max} 84	P _{max} 200												

ш	Maschinenelemente
=	Universität Dortmund
	Fakultät Maschinenbau
0 0	Prof. DrIng. B. Künne

Maschinenelemente I

Fachprüfung

E


E-VE 16 han 06.08 **Bl. 1 v. 3** Name: Künne / Mitarbeiter

Name:	MatrNr.:

Aufgabe E VE (Versagenskriterien)

Teilaufgabe	E-VE 1	E-VE 2	E-VE 3	E-VE 4	Σ
Max. Pktzahl	2	2,5	2,5	1	8
Erreichte Pktzahl					

Bei einer Transportanlage gemäß Skizze verfährt ein Transportwagen auf einer Laufbahn aus S235JR (St37), die auf Lagerböcken aus Stahlguss (GS) aufliegt. Der Transportwagen befährt die Laufbahn so selten, so dass von einem ruhenden Lastfall aufgegangen werden kann. Die Eigengewichte können vernachlässigt werden.

E-VE 1 In welcher Stellung des Transportwagens (A, B oder C) tritt die höchste Flächenpressung am linken Lagerbock auf? Die Breite der Auflagerfläche beträgt $B_A = 180$ mm. Wie groß muss die Länge L_A mindestens sein, wenn die maximal ertragbare Flächenpressung $p_{zul} = 70 \text{ N/mm}^2$ bei einer zusätzlichen Sicherheit von S = 10 nicht überschritten werden soll?

A, B oder C:	
$L_{\rm A}$:	

E-VE 2 In welcher Stellung des Transportwagens (A, B oder C) tritt die höchste Biegebelastung in der Laufbahn auf? Kennzeichnen Sie die Stelle der Laufbahn, an der das maximale Biegemoment wirkt. Wie hoch ist dieses maximale Biegemoment?

A, B oder C:	
$M_{\rm b}$:	

Maschinenelemente I

$\Box \circ \circ 1$	تسما	func	_
raci	ши	ifung	,
L CLC	TPI C		7

Kl.	E
-----	---

E-VE 16 han 06.08 **Bl. 2 v. 3** Name: Künne / Mitarbeiter

Name:	MatrNr.:
Name:	MatrInr.:

E-VE 3 Bei einer ähnlichen Anordnung beträgt das Biegemoment 30.000 Nm. Der Konstrukteur hat sich entschieden, für die Laufbahn einen IPB-Träger zu verwenden. Für den verwendeten Werkstoff S235JR (St37) ist $\sigma_{b~St37} = 200~N/mm^2$, die Sicherheit soll S = 5~ sein. Wie groß muss das Biegewiderstandsmoment eines Trägers mindestens sein? Wählen Sie ein geeignetes IPB-Profil aus der Tabelle unten aus.

Warmgewalzte I- Träger – IPB-	Kurz-			Maße (in mm			Quer- schnitt	
Reihe DIN 1025-2	zeichen	. 1	i		ı		_	$W_{\rm b}$
(11.1995)		h	b	S	t	r_1	cm ²	cm ³
	IPB 100	100	100	6	10	12	26,0	89,9
Y	IPB 120	120	120	6,5	11	12	34,0	144
	IPB 140	140	140	7	12	12	43,0	216
× 1	IPB 160	160	160	8	13	15	54,3	311
X = X	IPB 180	180	180	8,5	14	15	65,3	426
→ S L	IPB 200	200	200	9	15	18	78,1	570
	IPB 220	220	220	9,5	16	18	91,0	736
Y	IPB 240	240	240	10	17	21	106	938
b ▶	IPB 260	260	260	10	17,5	24	118	1150
	IPB 280	280	280	10,5	18	24	131	1380
	IPB 300	300	300	11	19	27	149	1680
	IPB 320	320	300	11,5	20,5	27	161	1930
	IPB 340	340	300	12	21,5	27	171	2160

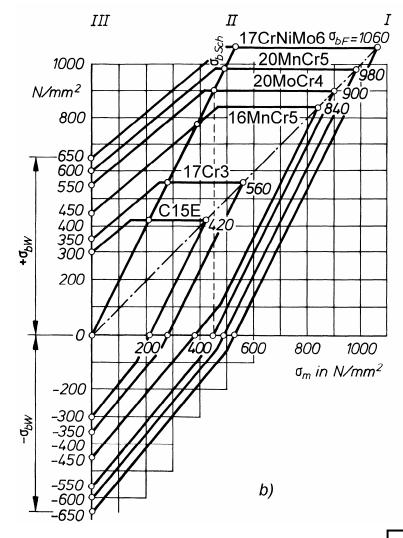
$W_{\rm b}$:	
IPB	

E-VE 4 Als Alternative für die Laufbahn steht ein Vierkant-Vollprofil zur Verfügung. Halten Sie dieses für besser oder schlechter geeignet? Geben Sie eine kurze Begründung an.

Maschinenelemente I

Fachprüfung

Kl. I	
-------	--


E-VE 16 han 06.08 **Bl. 3 v. 3** Name: Künne / Mitarbeiter

Name:	MatrNr.:
-------	----------

Aufgabe E AW (Achsen und Wellen)

)	Teilaufgabe	E-AW 1	E-AW 2	E-AW 3	E-AW 4	Σ
	Max. Pktzahl	3	2	6	4	15
	Erreichte Pktzahl					

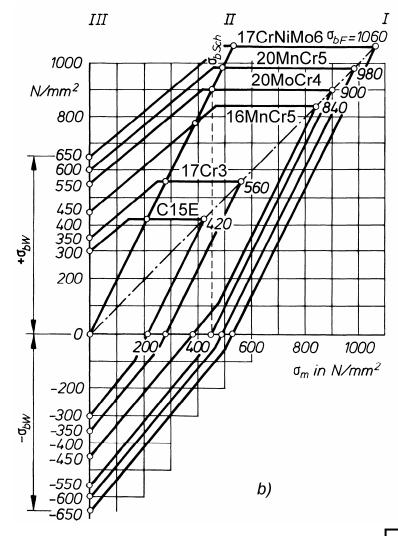
E-AW 1 Ermitteln Sie aus dem folgenden Diagramm die Biegedauerfestigkeit für den Werkstoff 20CrMo4 bei ruhender, schwellender und wechselnder Belastung. **Kennzeichnen** Sie im Diagramm die entsprechenden Punkte, an denen die Werte abgelesen werden, und geben Sie die abgelesenen Werte an.

ruhend: \approx N/mm² schwellend: \approx N/mm² wechselnd: \approx N/mm²

$Maschinen elemente \ I$

Fachprüfung

Kl. E


E-AW 16 han 06.08 **Bl. 1 v. 3** Name: Künne / Mitarbeiter

Name:	MatrNr.:

Aufgabe E AW (Achsen und Wellen)

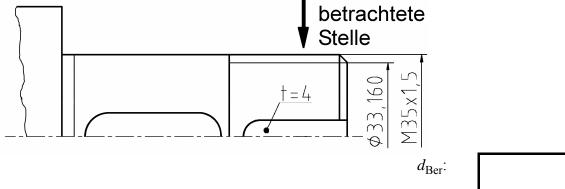
)	Teilaufgabe	E-AW 1	E-AW 2	E-AW 3	E-AW 4	Σ
	Max. Pktzahl	3	2	6	4	15
	Erreichte Pktzahl					

E-AW 1 Ermitteln Sie aus dem folgenden Diagramm die Biegedauerfestigkeit für den Werkstoff 20CrMo4 bei ruhender, schwellender und wechselnder Belastung. **Kennzeichnen** Sie im Diagramm die entsprechenden Punkte, an denen die Werte abgelesen werden, und geben Sie die abgelesenen Werte an.

ruhend: \approx N/mm² schwellend: \approx N/mm² wechselnd: \approx N/mm²

ш	Maschinenelemente
	Universität Dortmund
_	Fakultät Maschinenbau
00	Prof. DrIng. B. Künne

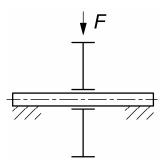
Maschinenelemente I


Fachprüfung

Kl.	F
-----	---

E-AW 16 han 06.08 **Bl. 2 v. 3** Name: Künne / Mitarbeiter

Name:	Matr -Nr ·
Name:	MatrNr.:

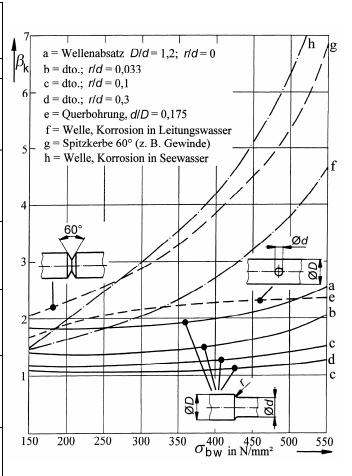

E-AW 2 Bestimmen Sie für die dargestellte Welle an der gekennzeichneten Stelle (siehe Pfeil) den Durchmesser d_{Ber} , den man in die Berechnungsformeln für den Spannungsnachweis einsetzen muss.

E-AW 3 Eine ähnliche Welle hat an der kritischen Stelle ein Gewinde mit einem Kerndurchmesser von 32 mm. Die Oberfläche ist geschlichtet, $R_z = 25$ μm. Die Welle ist aus E335 (St60) gefertigt. Es wirkt ein Biegemoment von 50 Nm und ein Torsionsmoment von 150 Nm (Zug-/Drucksowie Scherkräfte werden vernachlässigt). Es ist ein Festigkeitsnachweis zu führen. Wie groß ist die Vergleichsspannung? Wie groß ist die zulässige Spannung bei einer Sicherheit S = 2? Hält die Welle der Belastung stand? **Kennzeichnen** Sie in den jeweiligen Diagrammen (s. nächste Seite) die ermittelten bzw. verwendeten Werte.

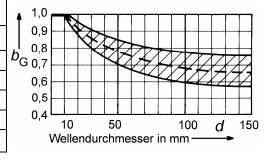
Vorh.
Spannung:
Zul.
Spannung:

E-AW 4 Auf einer glatten, feststehenden Achse gemäß nebenstehender Skizze ist eine Umlenkrolle gelagert. Auf die Achse wirkt mittig ein Biegemoment von $M_b = 2,4$ kNm (Scherkräfte werden vernachlässigt). Die Achse hat eine zulässige Biegespannung von $\sigma_{b \text{ zul}} = 80 \text{ N/mm}^2$ (Sicherheiten usw. sind hierin bereits berücksichtigt). Wie groß muss der Achsendurchmesser mindestens sein?

Maschinenelemente I

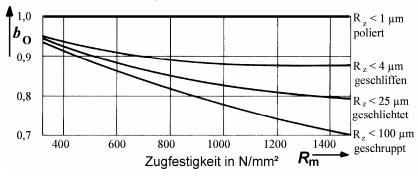

Fachprüfung

Kl. E


E-AW 16 han 06.08 **Bl. 3 v. 3** Name: Künne / Mitarbeiter

Name: Matr.-Nr.:

Kerbenform	Kerb- faktor β_k
Welle glatt, poliert	1
Passfedernut, mit Fingerfräser gefertigt	2
Passfedernut, mit Scheibenfräser gefer- tigt	2
Rundkerbe, $r/d = 0,1$	2
Presssitz, Nabe steif	2
Presssitz, Nabe nach- giebig ("entlastet")	1,6
Sicherungsringnut	3



Werkstoff	$\sigma_{\! m z\;sch}$	$\sigma_{\!$	$\sigma_{ m b\;sch}$	$\sigma_{\! m b~w}$	$ au_{ ext{t sch}}$	$ au_{ m t\ w}$
Allgemeine Baustähle:						
St 37	240	175	340	200	170	140
St 42	260	190	360	220	180	150
St 50	300	230	420	260	210	180
St 60	340	270	470	300	230	210
St 70	370	320	520	340	260	240

$$\begin{split} & \tau_{\rm t} = \frac{T}{W_{\rm t}} & \sigma_{\rm b} = \frac{M_{\rm b}}{W_{\rm b}} \\ & W_{\rm b} = \frac{\pi}{32} \cdot d^3 \qquad W_{\rm t} = \frac{\pi}{16} \cdot d^3 \\ & \sigma_{\rm v} = \sqrt{(\sigma_{\rm z} + \sigma_{\rm b})^2 + 3 \cdot (\alpha_0 \cdot (\tau_{\rm t} + \tau_{\rm s}))^2} \\ & \alpha_{\rm o} = \frac{\sigma_{\rm b\,grenz}}{1,73 \cdot \tau_{\rm tgrenz}} = \frac{\sigma_{\rm bw}}{1,73 \cdot \tau_{\rm tsch}} \\ & \sigma_{\rm zul} = \frac{b_{\rm G} \cdot b_{\rm O} \cdot \sigma_{\rm b\,grenz}}{\beta_{\rm k} \cdot S} = \frac{b_{\rm G} \cdot b_{\rm O} \cdot \sigma_{\rm b\,w}}{\beta_{\rm k} \cdot S} \end{split}$$

Oberflächenbeiwert b_0

ш	Maschinenelemente
=	Universität Dortmund
_	Fakultät Maschinenbau
0 0	Prof. DrIng. B. Künne

Maschinenelemente I

¬ 1	orüfung
⊣a∩nı	ariitiina
acm	nuiune

Kl.	E

Drehmoment:

E-WN 14 han 06.08 Bl. 1 v. 2

<u> </u>	Fakultät Maschinenbau Prof. DrIng. B. Künne	Fachprüfung				E-WN 14 han 06. Name: Künne / M	
Name:			N	/latrNr.:			
Aufgabe			Teilaufgabe	E-WN 1	E-WN 3	E-WN 4	Σ
(Welle-N	(abe-Verbindungen)		Max. Pktzahl Erreichte Pktzahl	3	3	3	9
E-WN 1	Bei einer Längspre pressen bestimmt v Stahl ($E = 210.000$ $R_{zA} = R_{zI} = 10 \mu m$ ten Sie , dass diese Sie zunächst das v samte) relative Haf	werden (Auszug au) N/mm²) gefertigt. . Die Teile wurden exakten Maße vor rorhandene Überma	us Skript s. üb Beide Fügeflä vor dem Füge eliegen und kei aß, berechnen	ernächste ä ächen habe en exakt ve ine Tolera	Seite). Be en eine Ob ermessen, nzen vorh	ide Bauteil berflächenra s. Zeichnur anden sind	e sind aus auheit von ag. Beach Ermitteln
					Ha Re	ermaß:	
E-WN 3	Bei einer ähnlicher bedingungen sind g maximale Einpress	gleich (s. Skizze ob	en). Beim Füg	gen der Läi	ngspressv	erbindung v	vurde eine
E-WN 4	Bei einer ähnlicher bedingungen sind moment kann die V	gleich (s. Skizze ol	oen). Für den l		we 35 N/mm²	² . Alle ande	

Maschinenelemente I

Fachprüfung

Kl. E

E-WN 14 han 06.08 Bl. 2 v. 2 Name: Künne / Mitarbeiter

Name: Matr.-Nr.:

Auszug aus dem Skript:

Mindestflächenpressung p_{\min} :

$$p_{\min} = \frac{2 \cdot T}{D_{F}} \cdot \frac{1}{\mu \cdot \pi \cdot D_{F} \cdot b} = \frac{2 \cdot T}{\mu \cdot \pi \cdot D_{F}^{2} \cdot b}$$

Durchmesserverhältnisse $Q_{\rm I}$ und $Q_{\rm A}$:

$$Q_{\rm I} = \frac{D_{\rm iI}}{D_{\rm F}}$$
 und $Q_{\rm A} = \frac{D_{\rm F}}{D_{\rm aA}}$

Relatives Haftmaßes ξ :

$$\xi_{\text{ges}} = \frac{Z_{\text{ges}}}{D_{\text{F}}} \quad \xi_{\text{I}} = \frac{Z_{\text{I}}}{D_{\text{F}}} \quad \xi_{\text{A}} = \frac{Z_{\text{A}}}{D_{\text{F}}}$$

Relative Aufweitung des Außenteils:

$$\left[\xi_{\text{A min}} = \frac{p_{\text{min}}}{E_{\text{A}}} \cdot \left(\frac{1 + Q_{\text{A}}^2}{1 - Q_{\text{A}}^2} + m_{\text{A}} \right) \right] \left[\xi_{\text{Amax}} = \frac{p_{\text{max}}}{E_{\text{A}}} \cdot \left(\frac{1 + Q_{\text{A}}^2}{1 - Q_{\text{A}}^2} + m_{\text{A}} \right) \right]$$

$$\xi_{\text{Amax}} = \frac{p_{\text{max}}}{E_{\text{A}}} \cdot \left(\frac{1 + Q_{\text{A}}^2}{1 - Q_{\text{A}}^2} + m_{\text{A}}\right)$$

Rel. Zusammendrückung d. Innenteils:
$$\left| \xi_{\text{I} \text{ min}} = \frac{p_{\text{min}}}{E_{\text{I}}} \cdot \left(\frac{1 + Q_{\text{I}}^2}{1 - Q_{\text{I}}^2} - m_{\text{I}} \right) \right| \left| \xi_{\text{I} \text{ max}} = \frac{p_{\text{max}}}{E_{\text{I}}} \cdot \left(\frac{1 + Q_{\text{I}}^2}{1 - Q_{\text{I}}^2} - m_{\text{I}} \right) \right|$$

$$\xi_{\text{I max}} = \frac{p_{\text{max}}}{E_{\text{I}}} \cdot \left(\frac{1 + Q_{\text{I}}^2}{1 - Q_{\text{I}}^2} - m_{\text{I}}\right)$$

Relatives Gesamt-Haftmaß ξ_{ges} :

$$\xi_{\text{ges min}} = \xi_{\text{I min}} + \xi_{\text{A min}}$$

$$\xi_{\text{ges max}} = \xi_{\text{I max}} + \xi_{\text{A max}}$$

$$\xi_{\text{ges min}} = \frac{p_{\text{min}}}{E} \cdot \frac{2}{1 - Q_{\text{A}}^2}$$

$$\xi_{\text{ges max}} = \frac{p_{\text{max}}}{E} \cdot \frac{2}{1 - Q_{\text{A}}^2}$$

Haftmaß Z_{ges} :

$$Z_{\text{ges max}} = \xi_{\text{ges max}} \cdot D_{\text{F}}$$

Übermaße U_{\min} und U_{\max} :

$$U_{\min} = Z_{\text{ges min}} + \Delta U = \xi_{\text{ges min}} \cdot D_{\text{F}} + 0.8 \cdot (R_{\text{zA}} + R_{\text{zI}})$$

$$U_{\text{max}} = Z_{\text{ges max}} + \Delta U = \xi_{\text{ges max}} \cdot D_{\text{F}} + 0.8 \cdot (R_{\text{zA}} + R_{\text{zI}})$$

Einpresskraft:

$$F_{\text{Lmax}} = \mu \cdot F_{\text{N}} = \mu \cdot p_{\text{max}} \cdot \pi \cdot D_{\text{F}} \cdot b$$

Konstruktionselemente / Maschinenelemente

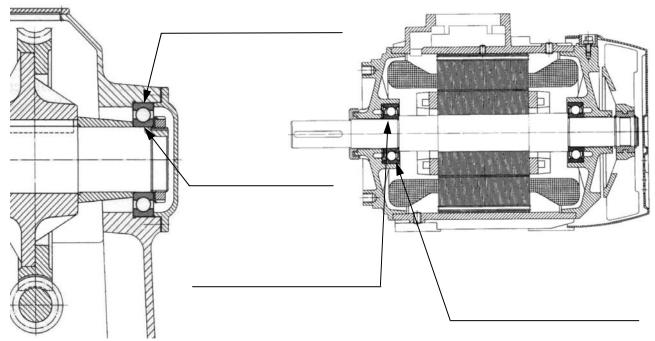
Fachprüfung

Kl. E

E-WL 15 ell 06.08 Bl. 1 v. 3 Name: Künne / Mitarbeiter

Name: MatrNr.:

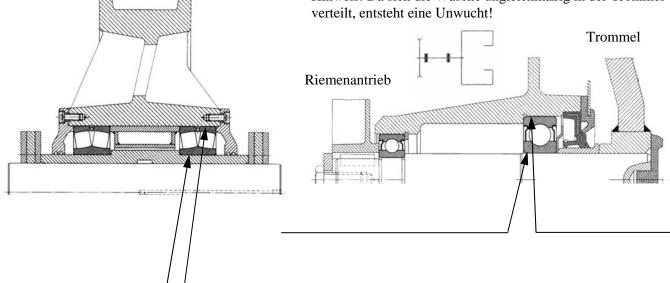
Aufgabe E WL


Teilaufgabe	E-WL 1	E-WL 2	E-WL 3	E-WL 4	Σ
Max. Pktzahl	4	1	1	3	9
Erreichte Pktzahl					

E-WL 1 Gegeben sind unterschiedliche Anwendungsfälle von Lagerungen. Für das jeweils gekennzeichnete Lager soll angegeben werden, welcher Ring Punktlast und welcher Ring Umfang-last besitzt. Des Weiteren ist anzugeben, ob die jeweils gekennzeichneten Ringe einen festen oder losen Sitz erfordern.

Schneckengetrieb

Drehstrom-Normmotor


Hinweis: Der Rotor besitzt eine leichte Unwucht

Laufrad eines Krans

Trommellagerung einer Haushalts-Waschmaschine

Hinweis: Da sich die Wäsche ungleichmäßig in der Trommel verteilt, entsteht eine Unwucht!

Fachprüfung

Kl.	Е

E-WL 15 ell 06.08 **Bl. 2 v. 3** Name: Künne / Mitarbeiter

Name:	MatrNr.:
-------	----------

E-WL 2 Welche Aufgaben übernimmt das Schmiermittel bei Wälzlagern? Nennen Sie vier Stichworte.

E-WL 3 Wovon ist die Grenzdrehzahl eines Wälzlagers abhängig? Nennen Sie vier Stichworte.

E-WL 4 In einem Drehstrom-Normmotor wurden Rillenkugellager der Größe 6312 eingebaut. Wie groß ist die max. radiale Kraft, mit der das Festlager belastet werden kann, wenn der gesamte Motor eine Lebensdauer von 20.000 h erreichen soll?

Angaben:

- Lager: **6312** (Bohrungsdurchmesser = 60 mm; Außendurchmesser = 130 mm)
- Dynamische Tragzahl C = 81.5 kN
- Lebensdauer des Drehstrom-Normmotors: 20.000 h
- Drehzahl des Motors: 3000 /min
- Es soll **nur** das Festlager berechnet werden

Konstruktionselemente / Maschinenelemente

Fachprüfung

Kl. E

E-WL 15 ell 06.08 Bl. 3 v. 3 Name: Künne / Mitarbeiter

Matr.-Nr.: Name:

Äquivalenten Lagerbelastung P:

Lagerlebensdauer in Umdrehungen:

$$L_{10 \text{U}} = L_{\text{U}} = \left(\frac{C}{P}\right)^p \cdot 10^6 \text{ Umdrehungen}$$

 $L_{10 \text{ U}} = \text{Lebensdauer in Umdrehungen}$

 \overrightarrow{C} = dynamische Tragzahl; ist im Lagerkatalog für jedes Lager angegeben

= dynamische äquivalente Belastung; Zusammenfassung von axialer und radialer Belastung

= Lebensdauerexponent (Kugellager: p = 3; Rollenlager: p = 10/3)

Lebensdauer in Betriebsstunden:

(Einheiten Stunden/Minuten beachten!)

n = Lagerdrehzahl; ggf. Relativdrehzahl

Fachprüfung

Kl. E	
E-GL 14 bar06.08 Bl. 1 v. 3	
Nama: Kiinna / Mitarhaitar	

Name: MatrNr.:

Aufgabe E-GL

Teilaufgabe	E-GL 1	E-GL 2.1	E-GL 2.2	E-GL 2.3	Σ
Max. Pktzahl	3,5	2,5	4	1	11
Erreichte Pktzahl					

E-GL 1 a) Nennen Sie die drei Reibungsformen, die im Zusammenhang mit hydrodynamischen Gleitlagern bekannt sind.

- b) Welcher Zustand (Reibungsform) wird für den Dauerbetrieb eines Gleitlagers angestrebt?
- c) Welchen Betriebszustand/-zustände kennzeichnet die Übergangsdrehzahl?

d) Welche Voraussetzungen müssen für die hydrodynamische Erzeugung des erforderlichen Schmierdrucks in einem Gleitlager vorhanden sein? Nennen Sie die drei Bedingungen.

Fachprüfung

Kl. E

E-GL 14 bar06.08 **Bl. 2 v. 3**Name: Künne / Mitarbeiter

Name: Matr.-Nr.:

E-GL 2 Eine Welle ist mit hydrodynamischen Radialgleitlagern gelagert. Die Daten der Lagerung sind im Folgenden genannt.

Betriebsdrehzahl $n = 6.000 \text{ min}^{-1}$ Lagerdurchmesser d = 100 mm

Passung E7/c7

oberes Abmaß der Grundtoleranz c = - 170 μ m unteres Abmaß der Grundtoleranz D = + 72 μ m Toleranzfeldbreite IT 7 = 35 μ m Breite-Durchmesserverhältnis b/d = 1,0

Viskosität des Schmiermittels $\eta = 15 \cdot 10^{-9} \text{ Ns/mm}^2$

Größtspiel des Lagers $s_{\text{max}} = 277 \, \mu \text{m}$

E-GL 2.1 In welchem Bereich sollte die Sommerfeldzahl liegen, damit das Gleitlager lauffähig ist? Welche Bedingungen (mit Erläuterung) für die relative und absolute Schmierfilmdicke ergeben sich aus den Grenzen für die Sommerfeldzahl?

E-GL 2.2 Wie groß darf die Radialkraft bei Mittenspiel maximal werden, damit das Gleitlager lauffähig ist?

E-GL 2.3 Welche Maßnahmen können unter Beibehaltung der groben geometrischen Abmessungen grundsätzlich getroffen werden, um ein Gleitlager auf höhere Radialkräfte abzustimmen?

Auszug aus den Vorlesungsumdrucken

Sommerfeldzahl So:

$$So = \frac{p_{\rm m} \cdot \psi^2}{\eta \cdot \omega} = \frac{F_{\rm r} \cdot \psi^2}{b \cdot d \cdot \eta \cdot \omega}$$

Konstruktionselemente / Maschinenelemente

Fachprüfung

KIF	₹.

E-GL 14 bar06.08 **Bl. 3 v. 3** Name: Künne / Mitarbeiter

Name:	MatrNr.:

Fachprüfung

Kl. E	
E-NT 7 ric 06.08 Bl. 1 v. 1	
Nama: Kiinna / Mitarhaitar	

Name: MatrNr.:

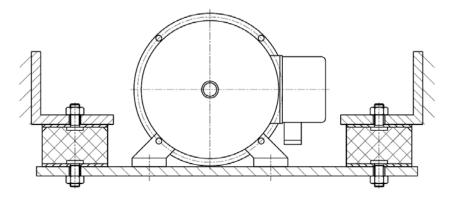
Aufgabe E NT (Nieten)

Teilaufgabe	E-NT 1	E-NT 2	Σ
Max. Pktzahl	1,5	1,5	3
Erreichte Pktzahl			

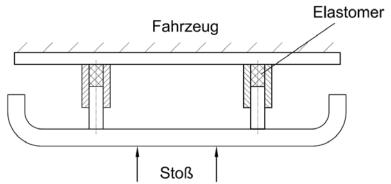
E-NT 1 Nennen Sie drei Vorteile von Nietverbindungen.

E-NT 2 Nennen Sie drei Nachteile von Nietverbindungen.

Fachprüfung


Kl. E
E-FE 13 lan 06.08 Bl. 1 v. 2
Name: Künne / Mitarbeiter

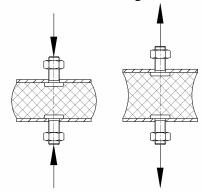
Name:	MatrNr.:


Aufgabe E FE (Federn)

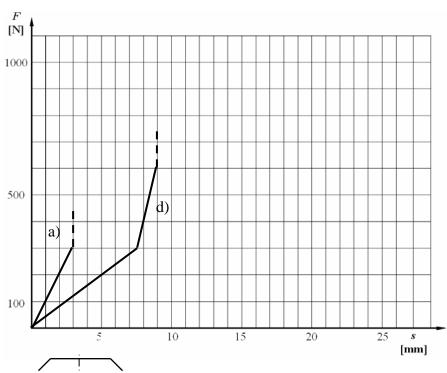
Teilaufgabe	E-FE 1	E-FE 2	E-FE 3	E-FE 4	Σ
Max. Pktzahl	1	1	1	6	9
Erreichte Pktzahl					

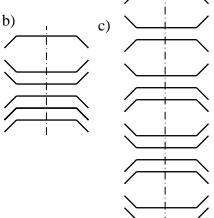
E-FE 1 Ein Motor ist wie in der Zeichnung dargestellt an Gummielementen aufgehängt. Beurteilen Sie diese Konstruktion, welchen Verbesserungsvorschlag können Sie machen?

E-FE 2 Durch die folgende, schematisch dargestellte, Konstruktion sollen bei einem Fahrzeug leichte Stöße auf die Stoßstange durch die dargestellten Elastomerfedern gedämpft werden. Beurteilen Sie auch diese dargestellte Konstruktion und geben Sie ggf. Verbesserungsvorschläge.


Fachprüfung

Kl. E


E-FE 13 lan 06.08 **Bl. 2 v. 2** Name: Künne / Mitarbeiter


Name:	MatrNr.:
	1/10/01/ 1 /1//

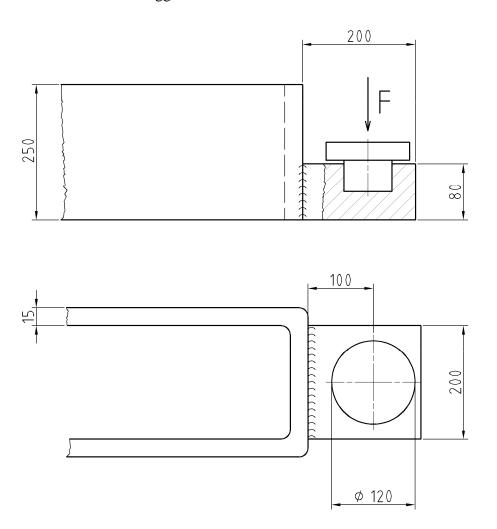
E-FE 3 Angenommen, die Materialkennwerte des Elastomers sind rein linear. Wie verhält sich die Kennlinie des Federelemetes, wenn es wie dargestellt einmal auf Druck und einmal auf Zug belastet wird? (Linear, degressiv oder progressiv)

E-FE 4 Zeichnen Sie die Kennlinien der Tellerfederpakete b) und c), wenn eine Tellerfeder die Kennlinie a) besitzt und zeichnen Sie zu der dargestellten Kennlinien d) das Tellerfederpaket.

Kl. E
E-SW 10 wer 06.08 Bl. 1 v.

Name: Künne / Mitarbeiter

Name:	MatrNr.:


Aufgabe E-SW (Schweißverbindungen)

Teilaufgabe	E-SW 1	Σ
Max. Pktzahl	9	9
Erreichte Pktzahl		

E-SW 1 Der dargestellte Arm einer Hebevorrichtung für Güterwaggons aus St 37 kann mit einer Gewichtskraft von 300.000 N belastet werden. Die Platte zur Kraftaufnahme wird mittels Abbrennstumpfschweißen mit dem U-Eisen verschweißt. Bei diesem Verfahren wird die gesamte Berührungsfläche verschweißt, d. h. die Fläche der Schweißnaht entspricht der Seitenfläche der Halteplatte. Die Güte der Schweißnähte erfüllt die Kriterien der Bewertungsgruppe B. Die Abrennstumpfnaht entspricht in ihrer Nahtart der Doppel-HV-Naht. Ist die Schweißnaht ausreichend dimensioniert?

Kennzeichnen Sie ggf. verwendete Tabellenwerte.

Fachprüfung

Konstruktionselemente / Maschinenelemente

Fachprüfung

Kl. E

E-SW 10 wer 06.08 **Bl. 2 v. 5** Name: Künne / Mitarbeiter

Name:	MatrNr.:
Name:	MatrNr.:

Konstruktionselemente / Maschinenelemente

Fachprüfung

KIF	₹.

E-SW 10 wer 06.08 **Bl. 3 v. 5** Name: Künne / Mitarbeiter

Name:	MatrNr.:
Name:	MatrNr.:

Konstruktionselemente / Maschinenelemente

Fachprüfung

Kl. E

E-SW 10 wer 06.08 **Bl. 4 v. 5** Name: Künne / Mitarbeiter

Name:	MatrNr.:
-------	----------

E-SW Formelsammlung:

Vorhandene Spannung bei Kehlnähten:

Belas-	le Spannung bei Ke	Nahtform	Nahtnenn-	Nahtfläche bzw.
tung			spannung	Widerstandsmoment
Biegung	M _b	a=s s a V	$\sigma_{ m b} = M_{ m b} / W_{ m b}$	$W_{b} = \frac{a \cdot l^{2}}{6} \text{hochkant}$ $W_{b} = \frac{a^{2} \cdot l}{6} \text{flachkant}$
Schub + Biegung	Fq		Vergleichs- spannung aus $\sigma_{\rm b}$ und $\tau_{\rm s}$	$\sigma_{v} = \frac{\left(\sigma_{b} + \sqrt{\sigma_{b}^{2} + 4 \cdot \tau_{s}^{2}}\right)}{2}$ $W_{b} = \frac{\left[\left(s + 2 \cdot a\right) \cdot \left(h + 2 \cdot a\right)^{3} - s \cdot h^{3}\right]}{6 \cdot \left(h + 2 \cdot a\right)}$
Torsion	T	S=e pØ	$\tau_{\rm t} = \frac{T}{W_{\rm p}}$	$W_{p} = \frac{\pi}{16} \cdot \frac{\left(d + 2 \cdot a\right)^{4} - d^{4}}{d + 2 \cdot a}$
Torsion + Biegung	7) M _b	a s ppa	Vergleichs- spannung aus $\sigma_{\rm b}$ und $\tau_{\rm t}$	$\sigma_{v} = \frac{\left(\sigma_{b} + \sqrt{\sigma_{b}^{2} + 4 \cdot \tau_{t}^{2}}\right)}{2}$ $W_{b} = \frac{\pi}{32} \cdot \frac{\left(d + 2 \cdot a\right)^{4} - d^{4}}{d + 2 \cdot a}$

 $\sigma_{z,d}$, σ_b , τ_s , τ_t , $\sigma_v =$ Spannungen

= Torsionsmoment

 $V_{\rm b}$ = Biege-Widerstandsmoment $V_{\rm p}$ = Polares Widerstandsmoment A = Nahtquerschnitt

 $\sigma_{\text{zul N/A}} = \text{zul\"{assige Spannungen}}$ $M_{\text{b}} = \text{Biegemoment}$

 $F_{z,d}$, $F_q = Zug-/Druckkraft$, Querkraft

Zulässige Spannung:

$$\sigma_{\text{zul N}} = \frac{\alpha_0 \cdot \alpha_{\text{N}} \cdot \beta \cdot \sigma_{\text{Grenz}}}{S}$$

$$\sigma_{\text{zulA}} = \frac{\alpha_0 \cdot \alpha_{\text{A}} \cdot \beta \cdot \sigma_{\text{Grenz}}}{S}$$

 $(\tau_{\rm zul} \ {\rm entsprechend})$

 $\approx 0.8 \cdot \sigma_{\rm w}$ wechselnde Schubbelastung

 α_0 = Beiwert für die Bewertungsgruppe der Schweißnaht

 $\alpha_{\rm o} = 1$ (Bew.-Gruppe A, nicht mehr genormt)

 $\alpha_{\rm o} = 0.8$ Bewertungsgruppe B

 $\alpha_0 = 0.5$ Bewertungsgruppe C, D

 $\beta=0.9$ Beiwert für Schrumpfspannungen (d. h. Eigenspannungen ≈ 10 % der Grenzspannung gesetzt)

S = Sicherheit

S = 1,5...2 bei schwellender Belastung

S = 2 bei wechselnder Belastung

 α_N = Formzahl der Naht gemäß Bild unten

 α_A = Formzahl des Anschlussquerschnitts gemäß Bild unten

$$\begin{split} \sigma_{\text{Grenz}} &= \text{Grenzspannung, abhängig von der Belastungsart} \\ &= \sigma_{\text{sch}} \quad \text{bei schwellender Zug-/Druckbelastung} \\ &= \sigma_{\text{w}} \quad \text{bei wechselnder Zug-/Druckbelastung} \\ &= \sigma_{\text{b sch}} \quad \approx 1,2..1,4 \cdot \sigma_{\text{sch}} \quad \text{schw. Biegebelastung} \\ &= \sigma_{\text{b w}} \quad \approx 1,3 \cdot \sigma_{\text{w}} \quad \text{wechselnde Biegebelastung} \\ &= \tau_{\text{sch}} \quad \approx 0,8 \cdot \sigma_{\text{sch}} \quad \text{schwellende Schubbelastung} \end{split}$$

Konstr

Konstruktionselemente / Maschinenelemente	
Tronstructions elemente / Truselmiene elemente	E-SV
Fachprüfung	Nam

Kl. E
E-SW 10 wer 06.08 Bl. 5 v. 5
Name: Künne / Mitarbeiter

Name:	MatrNr.:
-------	----------

Kennwerte für σ_{Grenz} in N/mm²:

	$\sigma_{\!\!_{ m sch}}$	$\sigma_{\!\scriptscriptstyle m w}$	$\sigma_{ m b,sch}$	$\sigma_{\! m b~w}$	$ au_{ m tsch}$	$ au_{ m t\ w}$
1.0037 (St 37)	230	130	300	160	140	100
1.0052 (St 52)	320	180	400	210	230	120

Dauerfestigkeitskennwerte und Formzahlen:

Nahtart (Symbol)	Bild		Kennwerte für 1.0037 (St 37) Naht Anschluss		Zug/Druck Naht Anschluss		Biegung/Schub Biegung Schub		
		$\alpha_{\rm N} \cdot \sigma_{\rm sch}$	$\alpha_{ m N} \cdot \sigma_{ m w}$	$\alpha_{\rm A} \cdot \sigma_{\rm sch}$	$\alpha_{\mathrm{A}} \cdot \sigma_{\mathrm{w}}$	$\alpha_{ m N}$	$\alpha_{\rm A}$	$\alpha_{ m N}$	$\alpha_{ m N}$
V-Naht (V)		100	55	100	55	0,4	0,5	0,50,6	0,35
V-Naht, wurzelver- schweißt DV-Naht (X)		180	100	180	100	0,7	70,8	0,80,9	0,50,7
V-Naht, bearbeitet		210	118	210	118	0	,92	1,0	0,73
Flachkehlnaht		80	50	130	75	0,35	0,56	0,5	0,35
Hohlkehlnaht		80	50	160	95	0,35	0,7	0,85	0,45
Doppel-HV-Naht, Dop- pel-HY-Naht (K-Naht)		130	73	140	78	0,56	0,6	0,8	0,45
Doppel-HV-Naht, Dop- pel-HY-Naht (K-Naht); hohl		160	91	184	104	0,7	0,70,8	0,85	0,45
Flachkehlnaht einseitig		57	32	-	-	0,25	-	0,12	0,2
HV-Naht, hohl		137	78	-	-	0,6	-	0,7	0,5
Flankenkehlnaht ohne/ mit Entkrater- Bearbeitung		150 160	84 91	70 110	50 70	-	0,35 0,5	-	0,65 0,7
Rundnaht	\bigcup_{M_t}	$a_{\text{N}} \cdot \tau_{\text{t sch N}}$ 70110		-	-	-	-	spruc	ahl für hbean- chung ≈ 0,5

ш	Maschinenelemen
_	Universität Dortmur
<u> </u>	Fakultät Maschinenba
ठि	Prof. DrIng. B. Künr

Fachprüfung

Kl. E	
E-SR 9 ric 06.08 Bl. 1 v. 2	
Name: Kijnne / Mitarbeiter	

Name:	MatrNr.:

Aufgabe E SR (Schrauben)

Teilaufgabe	E-SR 1	E-SR 2	E-SR 3	E-SR 4	Σ
Max. Pktzahl	4	2	1	3	10
Erreichte Pktzahl					

E-SR 1 Skizzieren Sie den Querschnitt eines Trapez-, Säge-, Rund- und Spitzgewindes. Nennen Sie für jedes dieser vier Gewinde einen typischen Anwendungsfall.

E-SR 2 Erläutern Sie die Bezeichnung M 20 x 2 LH.

M:

20:

2:

LH:

E-SR 3 Warum sollte die Festigkeit der Mutter mindestens so groß sein wie die der zugehörigen Schraube?

Fachprüfung

Kl.	Е

E-SR 9 ric 06.08 **Bl. 2 v. 2** Name: Künne / Mitarbeiter

Name:	MatrNr.:
-------	----------

E-SR 4 Eine Schraube M 10 der Festigkeitsklasse 8.8 wird mit einer ruhenden Kraft von F = 40 kN belastet. Wie groß ist die Sicherheit, dass die Verbindung hält?

Auszug aus dem Skript:

Metrisches ISO-Gewinde

Nenndurchmesser	d	M 3	M 4	M 5	M 6	M 8	M 10	M 12	(M14)	M 16	M 20	M 24
Steigung	P	0,5	0,7	0,8	1	1,25	1,5	1,75	2	2	2,5	3
Flankendurchmesser	$d_2 = D_2$	2,675	3,545	4,480	5,350	7,188	9,026	10,863	12,700	14,701	18,376	22,051
Kern-Ø Bolzen	d_3	2,387	3,141	4,019	4,773	6,466	8,160	9,853	11,546	13,546	16,933	20,319
Kern-Ø Mutter	D_1	2,459	3,242	4,134	4,917	6,647	8,376	10,106	11,835	13,835	17,294	20,752
Gewindetiefe Bolzen	h_3	0,307	0,429	0,491	0,613	0,767	0,920	1,074	1,227	1,227	1,534	1,840
Gewindetiefe Mutter	H_1	0,271	0,379	0,433	0,541	0,677	0,812	0,947	1,083	1,083	1,353	1,624
Nennquerschnitt	$A_{ m N}$	7,069	12,6	19,6	28,3	50,3	78,5	113	154	201	314	452
Kernquerschnitt	A_{d_3}	4,48	7,75	12,7	17,9	32,8	52,3	76,3	105	144	225	324
Spannungsquerschnitt	$A_{\mathbf{S}}$	5,03	8,78	14,2	20,1	36,6	58,0	84,3	115	157	245	352
Bohrungsmaße												
Kernlochdurchmesser	d_{14}	2,5	3,3	4,2	5	6,8	8.5	10,2	12	14	17,5	21
Durchgangsloch mittel H13	$d_{ m h}$	3,4	4,5	5,5	6,6	9	11	13,5	15,5	17,5	22	26

Fachprüfung

Kl. E E-ZR ell 14 06.08 Bl. 1 v. 5 Name: Künne / Mitarbeiter

Name:	MatrNr.:

Aufgabe E ZR

Teilaufgabe	E-ZR 1	E-ZR 2	E-ZR 3	E-ZR 4	E-ZR 5	E-ZR 6	Σ
Max. Pktzahl	1	3	1	2	1,5	1,5	10
Erreichte Pktzahl							

Ein Kommilitone bearbeitet gerade das Konstruktionsprojekt und hat Probleme bei der Auslegung des zweiten Ganges seines 2-Gang-Schaltgetriebes mit geradverzahnten Stirnrädern. Helfen Sie ihm!

Folgende Angaben konnte ihr Kommilitone noch berechnen:

Gang 1	Gar	ng 2
a = 198 mm	$z_3 = 20$	$z_4 = 80$
	i = 4	m = 4 mm

E-ZR 1 Welcher Achsabstand würde im Gang 2 entstehen ohne Profilverschiebung?

E-ZR 2 Berechnen Sie die Profilverschiebungssumme für den Gang 2 unter der Vorraussetzung, dass der Achsabstand von Gang 1 nicht mehr verändert werden kann!

E-ZR 3 Teilen Sie die Profilverschiebung so auf, dass $x_3 = -0.4$ beträgt. (falls Sie die Aufgabe E-ZR 2 nicht lösen konnten, rechnen Sie mit einer Profilverschiebungssumme von -0.6 weiter)

Fachprüfung

Kl. E	
E-ZR ell 14 06.08 Bl. 2 v. 5	
Name: Künne / Mitarheiter	

Name: MatrNr.:

Sind die gewählten Profilverschiebungen zulässig? Begründen Sie ihre Antwort! **E-ZR 4**

E-ZR 5 Berechnen Sie den Teilkreis-, Kopfkreis- und Fußkreisdurchmesser des Zahnrads 4.

Welche Gründe gibt es allgemein für eine Profilverschiebung (außer einer Anpassung des **E-ZR 6** Achsabstandes)?

Fachprüfung

K1. F	3
-------	---

E-ZR ell 14 06.08 **Bl. 3 v. 5** Name: Künne / Mitarbeiter

Name:	MatrNr.:
-------	----------

Formeln und Tabellen:

Evolventen-Funktion

 $\operatorname{inv} \alpha \equiv \operatorname{ev} \alpha = \tan \alpha - \widehat{\alpha}$

α in °	$\alpha \equiv \text{ev } \alpha = 0$,1	,2	,3	,4	,5	,6	,7	,8	,9
10	0,001794	0,001848	0,001904	0,001961	0,002020	0,002079	0,002140	0,002201	0,002264	0,002328
11	1	9	8	9	1	5	0	7	6	8
	0,002394	0,002460	0,002528	0,002597	0,002667	0,002739	0,002812	0,002886	0,002962	0,003038
	1	7	5	5	8	4	3	5	0	9
12	0,003117	0,003196	0,003277	0,003359	0,003443	0,003528	0,003615	0,003702	0,003792	0,003883
13	0,003975 4	6 0,004069 2	5 0,004164 4	8 0,004261 2	4 0,004359 5	5 0,004459 3	0 0,004560 7	9 0,004663 6	3 0,004768 1	0,004874 2
14	0,004981	0,005091	0,005202	0,005314	0,005429	0,005544	0,005662	0,005781	0,005902	0,006025
	9	2	2	7	0	8	4	7	7	4
15	0,006149	0,006276 0	0,006403 9	0,006533 7	0,006665 2	0,006798 5	0,006933 7	0,007070 6	0,007209 5	0,007350 1
16	0,007492 7	0,007637 2	0,007783 5	0,007931 8	0,008082 0	0,008234	0,008388	0,008544 4	0,008702 5	0,008862 6
17	0,009024	0,009188	0,009355	0,009523	0,009693	0,009866	0,010040	0,010217	0,010396	0,010577
	7	9	1	4	7	2	7	4	3	3
18	0,010760	0,010964	0,011133	0,011323	0,011515	0,011709	0,011906	0,012105	0,012306	0,012509
19	0,012715	0,012923	0,013134	0,013346	0,013562	0,013779	0,013999	0,014222	0,014447	0,014674
20	0,014904	0,015137	0,015372	0,015609	0,015850	0,016092	0,016337	0,016585	0,016836	0,017089
21	0,017345	0,017603	0,017865	0,018129	0,018395	0,018665	0,018937	0,019212	0,019490	0,019770
22	0,020054	0,020340	0,020629	0,020921	0,021217	0,021514	0,021815	0,022119	0,022426	0,022736
23	0,023049	0,023365	0,023684	0,024006	0,024332	0,024660	0,024992	0,025326	0,025664	0,026005
24	0,026350	0,026697	0,027048	0,027402	0,027760	0,028121	0,028485	0,028852	0,029223	0,029600
25	0,029975	0,030357	0,030741	0,031129	0,031521	0,031916	0,032315	0,032718	0,033124	0,033534
26	0,033947	0,034364	0,034785	0,035209	0,035637	0,036069	0,036505	0,036945	0,037388	0,037835
27	0,038287	0,038742	0,039201	0,039664	0,040131	0,040602	0,041076	0,041556	0,042039	0,042526
28	0,043017	0,043513	0,044012	0,044516	0,045024	0,045537	0,046054	0,046575	0,047100	0,047630
29	0,048164	0,048702	0,049245	0,049792	0,050344	0,050901	0,051462	0,052027	0,052597	0,053172
30	0,053751	0,054336	0,054924	0,055518	0,056116	0,056720	0,057328	0,057940	0,058558	0,059181
31	0,059809	0,060441	0,061079	0,061721	0,062369	0,063022	0,063680	0,064343	0,065012	0,065685
32	0,066364	0,067048	0,067738	0,068432	0,069133	0,069838	0,070549	0,071266	0,071988	0,072716
33	0,073449	0,074188	0,074932	0,075683	0,076439	0,077200	0,077968	0,078741	0,079520	0,080306
34	0,081097	0,081894	0,082697	0,083506	0,084321	0,085142	0,085970	0,086804	0,087644	0,088490
35	0,089342	0,090201	0,091067	0,091938	0,092816	0,093701	0,094592	0,095490	0,096395	0,097306
36	0,098224	0,099149	0,100080	0,101019	0,101964	0,102916	0,103875	0,104841	0,105814	0,106795
37	0,107782	0,108777	0,109779	0,110788	0,111805	0,112829	0,113860	0,114899	0,115945	0,116999
38	0,118061	0,119130	0,120207	0,121291	0,122384	0,123484	0,124592	0,125709	0,126833	0,127965
39	0,129106	0,130254	0,131411	0,132576	0,133750	0,134931	0,136122	0,137320	0,138528	0,139743
40	0,140968	0,142201	0,143443	0,144694	0,145954	0,147222	0,148500	0,149787	0,151083	0,152388
41	0,153702	0,155025	0,156348	0,157700	0,159052	0,160414	0,161785	0,163165	0,164556	0,165956
42	0,167366	0,168786	0,170216	0,171656	0,173106	0,174566	0,176037	0,177518	0,179009	0,180511
43	0,182024	0,183547	0,185080	0,186625	0,188180	0,189746	0,191324	0,192912	0,194511	0,196122
44	0,197744	0,199377	0,201022	0,202678	0,204346	0,206026	0,207717	0,209420	0,211135	0,212863
45	0,21460	0,21635	0,21812	0,21989	0,22168	0,22348	0,22530	0,22712	0,22896	0,23081
46	0,23268	0,23456	0,23645	0,23835	0,24027	0,24220	0,24415	0,24611	0,24808	0,25006
47	0,25206	0,25408	0,25611	0,25815	0,26021	0,26228	0,26436	0,26646	0,26858	0,27071
48	0,27285	0,27501	0,27719	0,27938	0,28159	0,28381	0,28605	0,28830	0,29057	0,29286
49	0,29516	0,29747	0,29981	0,30216	0,30453	0,30691	0,30931	0,31173	0,31417	0,31663

Durchmesser:

Konstruktionselemente / Maschinenelemente

Fachprüfung

Kl. E

E-ZR ell 14 06.08 Bl. 4 v. 5 Name: Künne / Mitarbeiter

Name: Matr.-Nr.:

Teilkreis: $d = m \cdot z$

Kopfkreis

 $\begin{aligned} d_{\rm a} &= d + 2 \cdot m + 2 \cdot x \cdot m & (-2 \cdot k \cdot m & \text{für Kopfkürzung}) \\ d_{\rm f} &= d - 2,5 \cdot m + 2 \cdot x \cdot m & (\text{für Spiel} = 0,25 \cdot m) \end{aligned}$ Fußkreis: $d_{\rm b} = d \cdot \cos \alpha_{\rm R}$ Grundkreis: mit $\alpha_{\rm R} = 20^{\circ}$

 $d_{\rm w} = \frac{d_{\rm b}}{\cos \alpha_{\rm w}}$ Betriebswälzkreis:

Fall 1: Berechnung des Achsabstandes bei gegebener Profilverschiebung (auch $x_1 = x_2 = 0$):

① inv $\alpha_{\rm w}$ ermitteln:

② $\alpha_{\rm w}$ ermitteln (Tabelle s. vorn)

3 Achsabstand berechnen:

$$a = \frac{z_1 + z_2}{2} \cdot m \cdot \frac{\cos \alpha_R}{\cos \alpha_W}; \ \alpha_R = 20^{\circ}$$

Fall 2: Achsabstand gegeben, Profilverschiebungen gesucht:

① Betriebseingriffswinkel
$$\alpha_{\rm w}$$
 aus
$$\cos \alpha_{\rm w} = \frac{z_1 + z_2}{2 \cdot a} \cdot m \cdot \cos \alpha_{\rm R} \quad \text{mit} \quad \alpha_{\rm R} = 20^{\circ}$$
② Profilverschiebungssumme
$$x_1 + x_2 = (z_1 + z_2) \cdot \frac{\text{inv } \alpha_{\rm w} - \text{inv } \alpha_{\rm R}}{2 \cdot \tan \alpha_{\rm R}}$$

$$x_1 + x_2 = (z_1 + z_2) \cdot \frac{\operatorname{inv} \alpha_{\mathrm{w}} - \operatorname{inv} \alpha_{\mathrm{R}}}{2 \cdot \tan \alpha_{\mathrm{R}}}$$

③ Überschlägige Aufteilung: $\frac{x_1}{x_2} \approx \frac{z_2}{z_1}$, insb. bei $x_1 + x_2 > 0$, Unterschnittsgrenze beachten!

Profilüberdeckung:

$$\varepsilon_{\alpha} = \frac{\sqrt{r_{\text{a}1}^2 - r_{\text{b}1}^2}}{m \cdot \pi \cdot \cos \alpha_{\text{R}}} + \frac{\sqrt{r_{\text{a}2}^2 - r_{\text{b}2}^2}}{m \cdot \pi \cdot \cos \alpha_{\text{R}}} - \frac{a \cdot \sin \alpha_{\text{w}}}{m \cdot \pi \cdot \cos \alpha_{\text{R}}} \qquad \text{mit} \qquad \alpha_{\text{R}} = 20^{\circ}$$

Kopfspiel:

$$c = 0.25 \cdot m - m \cdot \left(\frac{z_1 + z_2}{2} \cdot \left(1 - \frac{\cos \alpha_R}{\cos \alpha_W} \right) + (x_1 + x_2) \right)$$

Erforderliche Kopfkürzung:

$$k \cdot m = m \cdot \left(\frac{z_1 + z_2}{2} \cdot \left(1 - \frac{\cos \alpha_R}{\cos \alpha_W}\right) + (x_1 + x_2)\right)$$

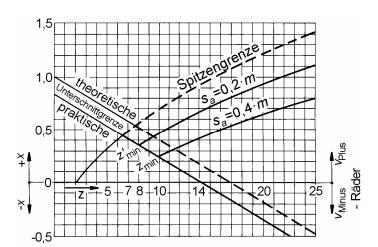
Kopfkreisdurchmesser:

$$d_{a} = d + 2 \cdot m + 2 \cdot x \cdot m - 2 \cdot k \cdot m$$

Unterschnitt- und Spitzengrenze

Konstruktionselemente / Maschinenelemente

Fachprüfung


Kl. E

E-ZR ell 14 06.08 **Bl. 5 v. 5** Name: Künne / Mitarbeiter

Name: Matr.-Nr.:

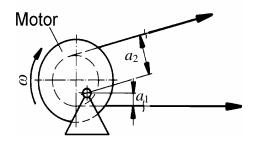
$$x_{\min} = \frac{z_{\rm g}' - z}{z_{\rm g}} = \frac{14 - z}{17}$$

Ausführung	S _{a min}	z_{\min}	$x_{\rm erf}$
kleinstmöglich (theor.)	fast 0	7	+ 0,43
ungehärtete Zähne	0,2 ⋅m	8	+ 0,36
gehärtete Zähne	0,4 ⋅m	10	+ 0,25

Fachprüfung

Kl. E E-RK 13 bar06.08 **Bl. 1 v. 2**

Name: Künne / Mitarbeiter


Name:	MatrNr.:
-------	----------

Aufgabe E-RK

Teilaufgabe	E-RK 1	E-RK 2	E-RK 3	Σ
Max. Pktzahl	1,5	3,5	2	7
Erreichte Pktzahl				

E-RK Gegeben ist die im Folgenden dargestellte Anordnung zur Vorspannung eines Schmalkeilriementriebes.

Es ist ein Drehmoment $T_{\rm an}=50~{\rm Nm}$ zu übertragen. Weiterhin sind folgende Werte gegeben:

Wirkdurchmesser der Riemenscheibe

Umschlingungswinkel

Reibwert (zwischen Flanke Riemen und Riemen-

scheibe)

Keilwinkel

 $d_{\rm w} = 200 \ {\rm mm}$

 $\beta = 170^{\circ}$

 $\mu_{\rm G} = 0.6$

 $\alpha = 36^{\circ}$

- **E-RK 1** Stellen Sie die Trumkräfte und die Achskraft als Funktion des übertragbaren Drehmomentes dar.
- **E-RK 2** Wie groß müssen die Trumkräfte F_1 und F_2 sein, damit der Riemen gerade nicht durchrutscht?
- **E-RK 3** Wie müssen die Abmessungen a_1 und a_2 gewählt werden, damit der Riemen gerade nicht durchrutscht?

Konstruktionselemente / Maschinenelemente

Fachprüfung

KIF	₹.

E-RK 13 bar06.08 **Bl. 2 v. 2**Name: Künne / Mitarbeiter

Name:	MatrNr.:

Konstruktionselemente / Maschinenelemente Fachprüfung

Kl. E	
E-KB 14 sej 06.08 Bl. 1 v. 2	
Nama: Kiinna / Mitarhaitar	

	Name:	MatrNr.:
--	-------	----------

Aufgabe E KB (Kupplungen)

Teilaufgabe	E-KB 1	E-KB 2	E-KB 3	Σ
Max. Pktzahl	1	2	6	9
Erreichte Pktzahl				

Ein Verbrennungsmotor treibt über eine Fliehkraftkupplung ein Förderband an, welches unabhängig von der Drehzahl ein konstantes Drehmoment von 20 Nm benötigt. Die Daten der Fliehkraftkupplung sind in **Abb. 1** angegeben. Für den Reibwert μ zwischen dem Reibbelag und dem Außenteil der Kupplung ist ein Wert von 0,3 anzunehmen. Jede der beiden eingesetzten, ungespannten Federn besitzt eine Federsteifigkeit c von 14.036 N/m.

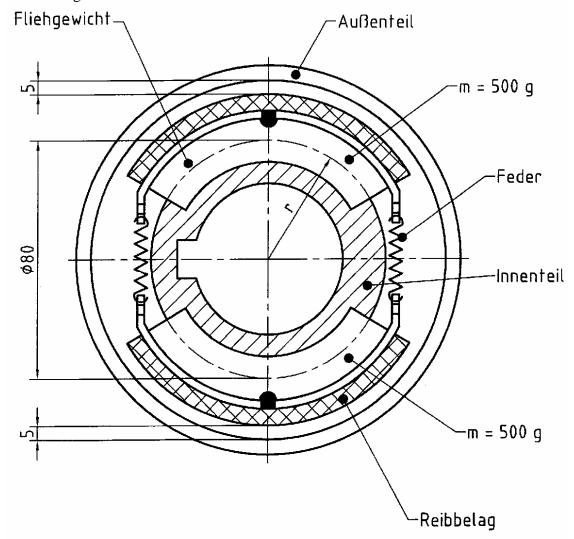


Abb. 1: Schematische Darstellung einer Fliehkraftkupplung

E-KB 1 Wird der Verbrennungsmotor bei seiner Leerlaufdrehzahl betrieben, liegen die Fliehgewichte mit ihren Reibbelägen gerade eben an dem Außenteil der Kupplung an. Um welchen Betrag Δl wird jede der beiden eingesetzten Federn dabei gegenüber der dargestellten Position gelängt?

Fachprüfung

E-KB 14 sej 06.08 **Bl. 2 v. 2** Name: Künne / Mitarbeiter

Name:	MatrNr.:

E-KB 2 Wie groß ist die Federkraft $F_{F,ges.}$, die von beiden Federn aufgebracht wird? **Anmerkung:** Die Federkraft F_F einer Feder lässt sich nach folgender Formel berechnen: $F_F = c \cdot \Delta l$.

E-KB 3 Bei welcher Drehzahl n [min⁻¹] des Motors setzt sich das Förderband erstmals in Bewegung? Zu diesem Zeitpunkt ist das von der Kupplung übertragbare Moment identisch mit dem unabhängig von der Drehzahl konstanten Drehmoment, das das Förderband benötigt. **Anmerkung:** Das von der Fliehkraftkupplung übertragbare Reibmoment M_R berechnet sich mit der Formel: $M_R = \mu \cdot r \cdot (F_\omega - F_{F,ges.})$. Für die auf die Reibelemente wirkende Fliehkraft F_ω gilt: $F_\omega = m_{ges.} \cdot r \cdot \omega^2$. Falls Sie **E-KB 2** nicht gelöst haben, rechnen Sie mit einer Federkraft $F_{F,ges.}$ von 300 N.

ш	Maschinenelemente
=	Universität Dortmund
<u> </u>	Fakultät Maschinenbau
ठठ	Prof. DrIng. B. Künne

Ko

Konstruktionselemente / Maschinenelemente	KI. E
	E-FÜ 11 ric 06.08 Bl. 1 v. 1
Fachprüfung	Name: Künne / Mitarbeiter

Name:	MatrNr.:

Aufgabe E FÜ (Führungen)

Teilaufgabe	E-FÜ 1	E-FÜ 2	E-FÜ 3	Σ
Max. Pktzahl	2	2	3	7
Erreichte Pktzahl				

v. 1

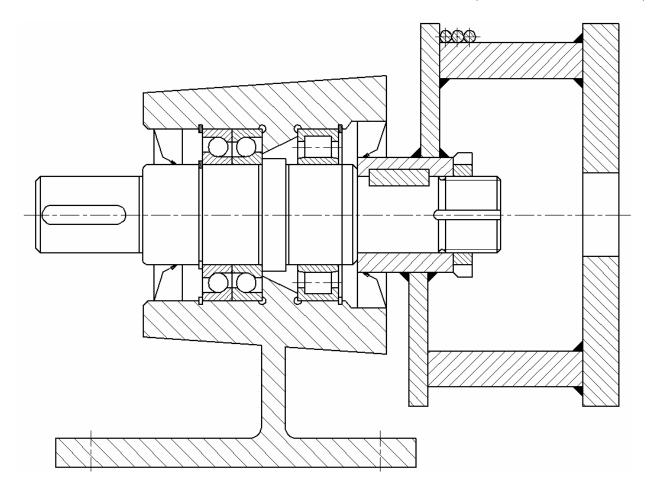
E-FÜ 1 Skizzieren Sie die Stribeck-Kurve (Reibbeiwert in Abhängigkeit der Geschwindigkeit) für eine hydrodynamische Gleitführung.

E-FÜ 2 Skizzieren Sie die Stribeck-Kurve (Reibbeiwert in Abhängigkeit der Geschwindigkeit) für eine hydrostatische Gleitführung.

E-FÜ 3 Beschreiben Sie kurz den Stick-Slip-Effekt.

Fachprüfung

Kl. E	
GG 10 lan 06 08	R


E-GG 10 lan 06.08 **Bl. 1 v. 2** Name: Künne / Mitarbeiter

Name:	MatrNr.:

Aufgabe E GG 10 (Konstruktionsaufgabe Getriebe)

Teilaufgabe	E-GG 1	E-GG 2	Σ
Max. Pktzahl	7	77	84
Erreichte Pktzahl			

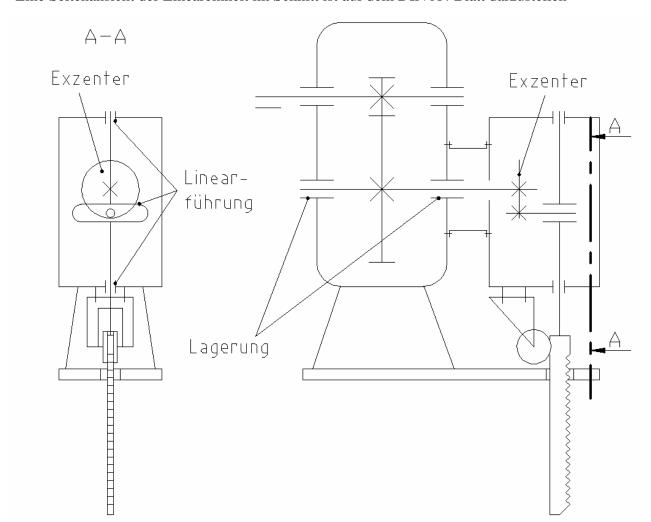
E-GG 1 Die folgende Konstruktion enthält leider einige Fehler. Kennzeichnen Sie 14 Fehler in der Konstruktion deutlich und beschreiben Sie die Fehler kurz (z. B. Abhilfe nennen o. ä.).

Fachprüfung

Kl. E

E-GG 10 lan 06.08 **Bl. 2 v. 2** Name: Künne / Mitarbeiter

Name:	MatrNr.:
-------	----------


Zu konstruieren ist die Kulissenführung einer elektrisch betriebenen Stichsäge mit einem einstufigen ölgeschmierten Getriebe gemäß untenstehender Prinzipskizze **freihändig** in zwei Ansichten. Alle Details müssen hinreichend erkennbar sein. Die Sägeblattaufnahme ist linear durch eine Führungsstange zu führen, in der eine weitere Führung für die Aufnahme des Exzenter vorzusehen ist.

Die seitliche Führung des Sägeblattes, zur Aufnahme der Schnittkräfte, erfolgt durch eine geschlitzte Rolle, die auf dem Aufgabenblatt bereits vorgegeben ist.

Die Welle des Exzenter ist mit geeigneten Wälzlagern in O- Anordnung zu lagern. Die Lagerung der Antriebswelle ist beliebig. An der Antriebswelle ist ein geeignetes Wellenende mit formschlüssiger Nabengestaltung vorzusehen.

Berücksichtigen Sie bei ihrer Konstruktion folgendes:

- Gestaltung des Getriebegehäuses als Gusskonstruktion, Kulissenführungsgehäuse als Schweißkonstruktion (siehe Skizze)
- Gestaltung des Auslegers zur Seitenführung des Sägeblattes (auf Zeichenblatt bereits vorgegeben) als Schweißkonstruktion (siehe Skizze)
- Lagerung der Wellen in Wälzlagern mit ölgeschmierten Zahnrädern
- Eine Schraubenverbindung und die Ölschrauben sind darzustellen (sonst nur Mittellinien)
- Eine Seitenansicht der Lineareinheit im Schnitt ist auf dem DIN A4 Blatt darzustellen

Maschinenelemente

Fachprüfung

Kl. E

E-GG lan 06.08 **Bl. 2 v. 3**

Name: Künne / Mitarbeiter

Name / Matrikel-Nr.:

Maschinenelemente

E-GG lan 06.08 **Bl. 2 v. 3**

Kl. E

Name / Matrikel-Nr.:

Fachprüfung

Name: Künne / Mitarbeiter