
UNIVERSITÄT DORTMUND

Fakultät Maschinenbau Maschinenelemente der Transporttechnik Universitätsprofessor Dr.-Ing. habil. B. Künne

FACHPRÜFUNG KONSTRUKTIONSELEMENTE B

21.02.2000 - 10:30 bis 13:00 Uhr (2,5 Stunden)

Bearbeiter:						
MatrNr. :						

Umfang:

Maschinenelemente II, III, IV

(120 Punkte)

 Σ = 120 Punkte

Die Klausur ist bestanden, wenn mindestens 48 Punkte erreicht wurden.

Hinweise zur Bearbeitung:

- > Alle Blätter sind mit dem Namen und der Matrikel-Nr. zu beschriften.
- > Alle Aufgaben sind auf den Aufgabenblättern zu bearbeiten. Zusätzliche Blätter sind beim Aufsichtspersonal erhältlich.
- Zugelassene Hilfsmittel: Keine (außer Taschenrechner, Schreib- und Zeichenwerkzeug)

Bewertung: (Nicht vom Bearbeiter auszufüllen)

E-GL	E-AW	E-WL	E-SW E_SW_2	E-FE E_FE_3	E-ZR E_ZR_4	E-RK E_RK_2	E-KB E_KB_2	E-GG	Σ
P _{max} 9	P _{max} 10	P _{max} 10	P _{max} 8	P _{max} 9	P _{max} 10	P _{max} 9	P _{max} 8	P _{max} 47	P _{max} 120

0 0	Prof.Dr.habil. Künne						
MTT O O	Maschinenelemente der Transporttechnik Uni Dortmund FB 7						

Aufgabe E-GL (Gleitlager)

Konstruktionselemente / Maschinenelemente Fachprüfung

e			K	1. E
-	Ε	GL	3	meh00.0

E_GL_3 meh00.02 Bl. 1 v. 2
Name: Künne/Mitarbeiter

•	 -	_	
_	 _		 _

Teilaufg.

Max. Pktzahl

Erreichte Pktzahl

Matr.-Nr.:

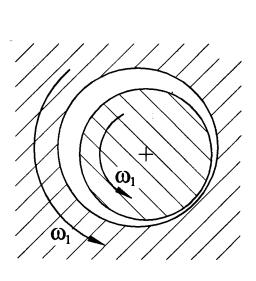
E_GL_2

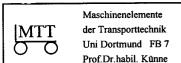
2

E GL 3

E_GL_1

1


-	E_GL_4	Summe
	4	9


Gleitlager

1. Erläutern Sie die unterschiedlichen Wirkungsweisen von hydrostatischen und hydrodynamischen Gleitlagern.

2. Welche Vor- und Nachteile haben hydrodynamische Gleitlager gegenüber hydrostatischen Gleitlagern? Nennen sie jeweils 2 Vor- und 2 Nachteile.

3. Ist die skizzierte Lagerung, in der Welle und Lagerschale gleichsinnig rotieren, geeignet als hydrodynamisches Gleitlager? Begründen Sie Ihre Antwort.

Konstruktionselemente / Maschinenelemente

Kl. E

E_GL_3 meh00.02 Bl. 2 v. 2

Name: Künne/Mitarbeiter

Fachprüfung

4. In einer Maschine ist ein hydrodynamisches Radialgleitlager mit den folgenden Werten eingebaut.

d=100 mm Wellen-Nenndurchmesser Breite/Durchmesser-Verhältnis b/d = 0.88 $0,0021 \text{ Ns/m}^2$ Dynamische Viskosität $F_m = 15 \text{ kN}$ Mittlere Lagerlast δ= 0,009 Relative Spaltdicke 0,04 mm Absolutes Lagerspiel $S_0 = \frac{p_m \cdot \psi^2}{\eta \cdot \omega}$ Sommerfeldzahl

4.1 Berechnen Sie den spezifischen Lagerdruck pm.

4.2 Bestimmen Sie das relative Lagerspiel ψ .

4.3 Für welche Drehzahl ist die Lagerung ausgelegt, wenn die Sommerfeldzahl S_0 = 2 ist? Wenn Sie den spezifischen Lagerdruck aus Aufgabenteil 1 nicht berechnet haben, setzen Sie $p_m = 1 \text{ N/mm}^2$.

4.4 Bestimmen Sie die minimale Spaltdicke ho. (Es gilt)

MTT		nelemente oorttechnik	Kons	struktio	nselem	ente / M		Kl. E				
5 0	Uni Dortmund FB 7 Prof.Dr.habil. Künne Fachprüfung									E_AW_ Name:	4_bre00.02 Bl Künne/Mitarb	
me:							Matr.	-Nr.:				
fgabe I	E- AW	(Achsen u	nd We	ellen)	Teilau Max. I Erreic Punkt	Pktzahl hte	E-AW.1	E-AW	7.2 E-AV	V.3 E-	AW.4 Sun	
Drehn	noment	te Welle w von M _t = durch die K	= 30	Nm (z	wische	n den	Stellen	C ur	nd D).	Weiterl	nin ergebe	n s
-		$F_{D} = 0$	35 N	\			Ø 25		F _c = {	55 N	t=4	
F _A = (60 N	30	·	•		60			25	5	,	
q												
b												e de la companya de
1		M ₁ =30 N	m									

IN ATTER	Maschinenelemente	Konstruktionselemente / Maschinenelemente	Kl. E
MTT O O	der Transporttechnik Uni Dortmund FB 7 Prof. Dr. habil. Künne	Fachprüfung	E_AW_4_bre00.02 Bl. 2 v. 8 Name: Künne/Mitarbeiter
E-AW.2		Vergleichsspannung im mit 'C' bezeichneten Wesetzt; Belastungsfall: schwellend)	ellenquerschnitt (dort wird

E-AW.3 Berechnen Sie die zulässige Spannung in 'C' Setzen Sie dabei eine 1,5-fache Sicherheit

E-AW.4 Ist die Welle in 'C' ausreichend dimensioniert? Begründung

voraus.

Achsen und Wellen

Maschinenelemente II

E II-3.8

Datum: 20.03.97 Name: Künne

Formelsammlung 3.5

Allgemeines: Scherspannung:

$$\tau_s = \frac{F_Q}{A}$$

 $|\tau_s = \frac{F_Q}{A}|$ mit $F_Q = \text{Querkraft}$ $A = \frac{\pi}{4} \cdot d^2$

Torsionsspannung:

$$\tau_t = \frac{M}{W}$$

 $\boxed{\tau_{t} = \frac{M_{t}}{W_{p}}} \quad \text{mit} \quad \boxed{W_{p} = \frac{\pi \cdot d^{3}}{16}}$ (Vollwelle)

 $W_{p} = \frac{\pi \cdot (d_{a}^{4} - d_{i}^{4})}{16 \cdot d_{a}}$ (Hohlwelle)

 $\sigma_{z,d} = \frac{F_{z,d}}{\Delta}$ Zug-/Druckspannung:

Zug-/Druckspannung:
$$\sigma_{z,d} = \frac{r_{z,d}}{A}$$
Riegespannung: Mh

 $\left|\sigma_{b} = \frac{M_{b}}{W_{b}}\right|$ mit $W_{b} = \frac{\pi \cdot d^{3}}{32}$ (Vollwelle)

Biegespannung:

 $W_{b} = \frac{\pi \cdot (\overline{d_{a}^{4} - d_{i}^{4}})}{32 \cdot d_{a}}$ (Hohlwelle)

Zusammenfassung: $\boxed{\sigma = \sigma_b + \sigma_{z,d}} \qquad \boxed{\tau = \tau_t + \tau_s}$ Vergleichsspannung: $\boxed{\sigma_v = \sqrt{\sigma^2 + 3(\alpha_0 \cdot \tau)^2} \leq \sigma_{zul}} \qquad \text{mit} \qquad \boxed{\alpha_0 = \frac{\sigma_b \text{ grenz}}{1,73 \cdot \tau_t \text{ grenz}}}$

 $\sigma_{bzul} = \frac{b_{G} \cdot b_{o} \cdot \sigma_{b \text{ grenz}}}{\beta_{vb} \cdot S}$

Grenzspannung nach Lastfall

Zul. Spannung:

Wellen:

Vergleichsmoment: $M_v = \sqrt{M_b^2 + \frac{3}{4}(\alpha_0 \cdot M_t)^2}$

 $d_{erf} \ge \sqrt[3]{\frac{32 \cdot M_v}{\pi \cdot \sigma_{h,zul}}}$ Erf. Durchmesser:

Achsen:

Lochleibungsdruck:

 $\sigma_{L} = \frac{F_{n}}{s \cdot d} \le \sigma_{L \text{ zul}} \qquad \text{(für St 37 gilt } \sigma_{L \text{ zul}} = 80..120 \text{ N/mm}^2\text{)}$

 $\sigma_{b \text{ grenz}} = \sigma_{bw} \text{ oder } \sigma_{b \text{ sch}}$ $\tau_{t \text{ grenz}} = \tau_{tw} \text{ oder } \tau_{t \text{ sch}}$

Flächenpressung in der Lagerbuchse:

(für Rotguß gilt $p_{zul} = 6...8 \text{ N/mm}^2$)

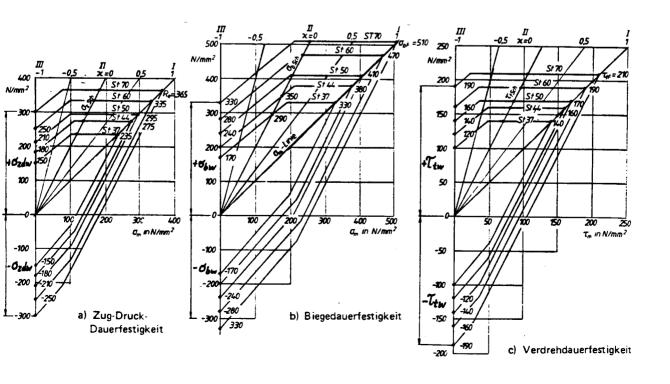
Masch
MTT der Tr
Uni D

Maschinenelemente der Transporttechnik Uni Dortmund FB 7 Prof.Dr.habil. Künne

Maschinenelemente II

Achsen und Wellen

E II-3.9

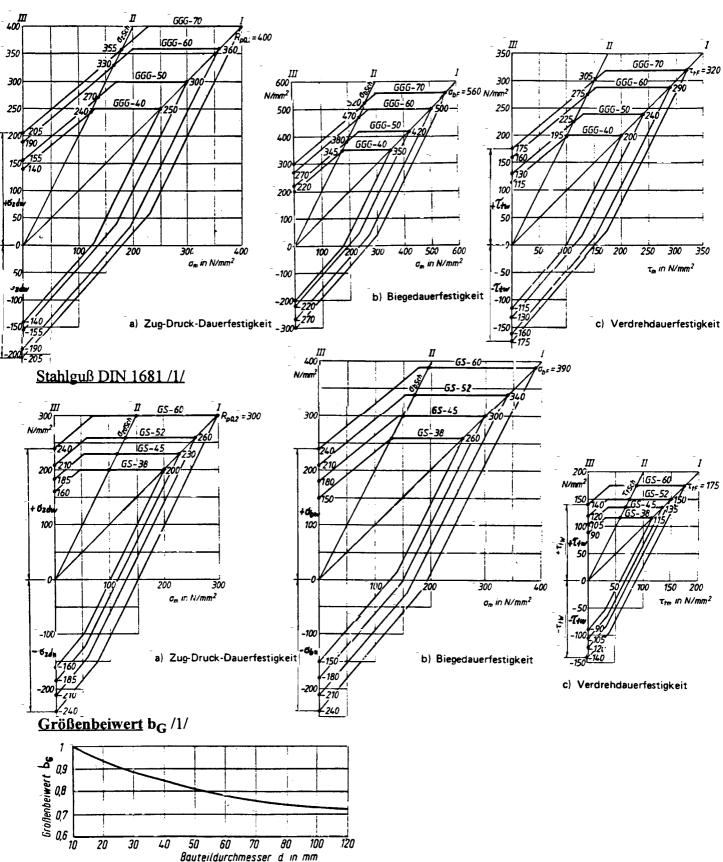

Datum: 23.03.1994 Name: Künne

Flächenträgheitsmomente und Widerstandsmomente verschiedener Wellenquerschnitte /1/

	Bie	gung	Torsion						
	16	W _b	$I_{t} = I_{p}$	$W_t = W_p$					
	$\frac{\pi}{64} \cdot d^4$	$\frac{\pi}{32} \cdot d^3$	$\frac{\pi}{32} \cdot d^4$	$\frac{\pi}{16} \cdot d^3$					
0	$\frac{\pi}{64}\cdot(D^4-d^4) \qquad \qquad \frac{\pi}{32}\cdot\frac{D^4-d^4}{D}$		$\frac{\pi}{32}\cdot(D^4-d^4)$	$\frac{\pi}{16} \cdot \frac{D^4 - d^4}{D}$					
D	$0.003 \cdot (D+d)^4$	-0.012 (D	0,1 · d ⁴	0,2 · d³					
	(D+a)	$0.012 \cdot (D+d)^3$	0,006 · (D + d) ⁴	$0.024 \cdot (D+d)^3$					
	$0.01 \cdot D^3 \cdot (5D - 8.5d)$	$0.1 \cdot D^2 \cdot (D-1.7d)$	$0.02 \cdot D^3 \cdot (5D - 8.5d)$	$0.2 \cdot D^2 \cdot (D-1.7d)$					
2e ₁ d ₁	$0.05 \cdot d_1^2 \cdot (d_1^2 - 24e_1^2)$	$0.1 \cdot \frac{d_1^2}{d_2} \left(d_1^2 - 24 e_1^2 \right)$	$0.1 \cdot d_1^2 \cdot (d_1^2 - 24 e_1^2)$	0,162 · d ₁ ³					
8	0,075 · d ₂ 4	0,15 d ₂ ³	0,15 · d ⁴	$0.2 \cdot d_2^3$					

Dauerfestigkeitsschaubilder

Allg. Baustähle DIN 17 100 /1/

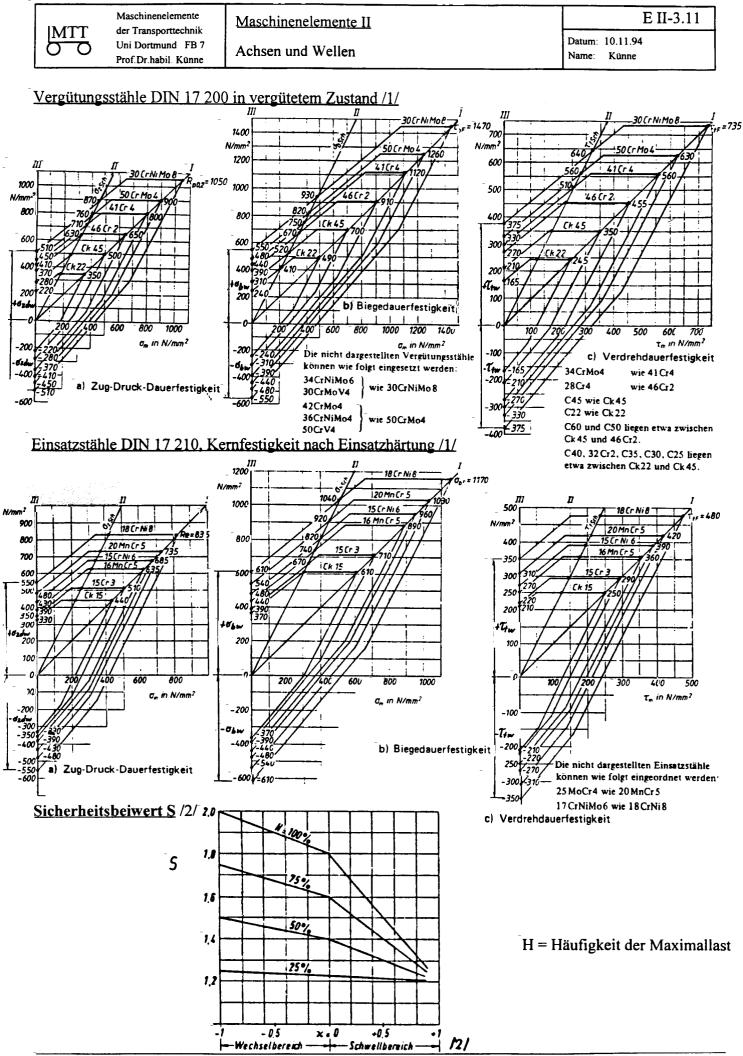

Maschinenelemente II Achsen und Wellen

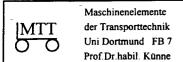
Datum: 23.03.1994

Name: Künne

E II-3.10

Kugelgraphitguß DIN 1693 /1/


Quadratquerschnitt mit Biegebelastung: Rechteckquerschnitt mit Biegebelastung:


Quadrat oder Rechteck mit Torsionsbelastung:

d = Kantenlänge

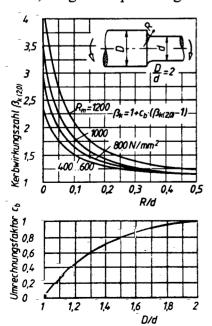
d = Kantenlänge in Biegerichtung

d = Flächendiagonale

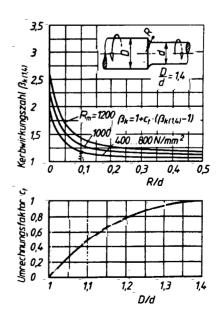
Maschinenelemente II

Achsen und Wellen

E II-3.12


Datum: 23.03.1994 Name: Künne

$\underline{Kerbfaktor} \; \beta_{\boldsymbol{k}} \; (vereinfachte \; Ermittlung) \; / 2 /$

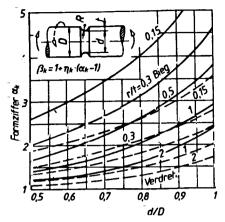

Kerbform		eta_{kb}								
Kelololii		$R_{\rm m} \approx 500 \rm N/mm^2$	$R_{\rm m} \approx 1000 \ {\rm N/mm^2}$							
polierte Oberfläche			1,0							
geschliffene Oberfläche			1,25							
Oberfläche korrodiert durch l	Leitungswasser		3,4							
Obersläche korrodiert durch S	Seewasser		5,4							
umlaufende Halbkreiskerbe										
umlaufende Spitzkerbe (z.B. bei scharf geschnitte- nem Gewinde)		2,5	4,6							
Rechteckkerbe (z. B. Ringnut)		≈ 2,5 ··								
Querbohrung		≥ 1.8 (für $D/d = 5.7$)	2,3 (für $D/d = 5,7$)							
Rundungshalbmesser ϱ am Wellenabsatz $D/d = 1,2$	निन	1,1 1,2 1,4 1,8 1) (für $\varrho/d = 0,3$; 0,1; 0,03; 0)	1,16 1,35 1,7 2,2 ¹) (für $\varrho/d = 0,3$; 0,1; 0,03; 0)							
Verbindung mit Paßfeder oder Einlegekeil		> (1,8) 2,0								
Welle mit Auslaufnut (ohne Keil)	Same of the same o	1,4	1,65 (für $\sigma_{\rm B} = 700 \text{ N/mm}^2$)							
Schrumpfsitz, Nabe zylindrisch ("steif")	#//n	> 1,9 \cdots 2,0 2)								
Schrumpfsitz, Nabe kegelig ("elastisch")		> 1,55²)								

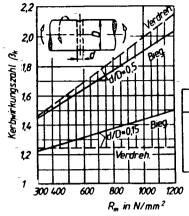
Kerbfaktor β_k (genauere Ermittlung) /1/

Wellenabsatz, Biegebeanspruchung

Wellenabsatz, Reine Torsionsbeanspruchung

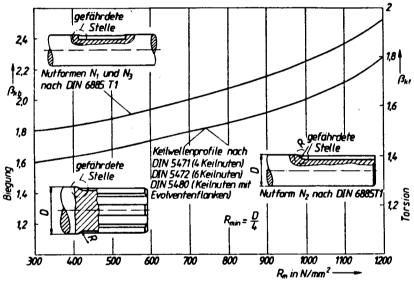
Maschinenelemente II


Achsen und Wellen


E II-3.13

Datum: 10.11.94 Name: Künne

Eingedrehte Welle, Biegung und Torsion


Quergebohrte Welle, Biegung und Torsion

Werkstoff	η _k
C-Stähle (St 37 St 70)	0,4 0,8
Vergütungsstähle	0,6 0,9
Federstähle	0,9 1
Leichtmetalle	0,3 0,6

Paßfedernut und Keilwelle, Biege- und Torsionsbeanspruchung

1200

Erreichbare Rauhtiefen verschiedener Trennverfahren

Trennverfahren	Erreichbare gemittelte Rauhtiefe R, in μm											1									
<u> </u>	Н	4	_	4	4	-+	-	Н	Н	-	4	4	4	4	-	Н	Н	Н	-1	4	_
Schneiden	Ц	4	4	Ц	4	4	4	Н	4	4	4	4	}	4	-	=		_	4	-	_
Längsdrehen	Н	4	4	Н	4	-	4	Н	4	Н	-	-	4	4	-	Н		-	+	4	-
Plandrehen	Н	4	4	Ц	4	4	4		4	-	_	4	-	۲	-	=		Н	4	╣	-
Einstechdrehen	Н	_	Ш	Ц	4	4	4	Н	4	_		4	4	4	_		۲	Ц	4	4	_
Hobeln	Ц		_	Ц	_	_	_		_		_	_	4	-	-	_	_		4	4	_
Stoßen	Ц	Ц		Ц	┙			Ц	_	Ц		Ц	_	_						_	L
Schaben	Ц			Ц	╝	Ц		Ц	Ц	Ш		4	_		_	Ц	Ц	Ц	Ц	4	L
Bohren	Ц			Ц								Ц		Ш	Ц	Ц	_		_	_	L
Aufbohren									Ц										Ц	_	L
Senken	L																				L
Reiben	L																				L
Umfangfräsen																					
Stirnfräsen																			\Box	Ī	
Räumen	П			П															П	П	Ī
Feilen	Г		Г	П															П		Γ
Rund-Längsschleifen	Г	Γ	Г	П				П	П										П	П	Г
Rund-Planschleifen	T	Г	Г	Г		П		Г	П						Ī	П	Г	П	П	П	Г
Rund-Einstechschleifen	Т	Г	Г	Γ	П	П		Н	Н					-	Т	Г		Н	Н	П	Γ
Flach-Umfangsschleifen	T	Г	Н	Н	Н	Π		Г	П					Н	L	Г	Г	Г	П	П	۲
Flach-Stirnschleifen	T	┢	T	Н	Н		Г	Т	Г	Г				Г	Г	Г	Г	Н	П	П	۲
Polierschleifen	t	T	1	1	Н	Н			Г					Г	Г	1	Г	Г	Н		Γ
Langhubhonen	t	H	Г	Т			_	i						┪	Г	t	T	T	П	П	Γ
Kurzhubhonen	t	1	Ī						Г	Π		Г			1	Т	1	1	H	Н	۲
Rundläppen	t	Г	Т	Г						Г	1	T	П	Г	Г	Т	Т	Г	H	Н	r
Flachläppen	†	Г	Ī	Τ					Γ		Г	Г	_	T	Г	Т	Τ	Г	Н	П	۲

Oberflächenbeiwert b ₀ /1/	Rz Ro in µm
	1 0,25
	2 0,5
4"	4/1
\$ 0,8	6 16
0,9 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	20 63
Palinan Palina	40 16
8 06	100 40
0.5 300 400 500 600 700 800 900 1000 1100 1200 1300 Bruchfestigkeit R _m in N/mm² (< 16 mm)	 14.00

	Oberflächen- zeichen nach	İ					nrauhv		
	DIN 3141	Reihe 1	Reihe 2	Reihe 3	Reihe 4	Reihe 1	Reihe 2	Reihe 3	Reihe 4
Schruppbearbeitung	∇	160	100	63	25	25	12.5	6,3	3.2
Schlichtbearbeitung	$\nabla\nabla$	40	25	16	10	6,3	3.2	1.6	0.8
Feinschlichtbearbeitung	$\nabla\nabla\nabla$	16	6.3	4	2.5	1,6	0,8	0.4	0.2
Feinstbearbeitung	$\nabla\nabla\nabla\nabla$	-	1	1	0.4	-	0.1	0,1	0,02

	Maschinenelemente
MTT	der Transporttechnik
0 0	Uni Dortmund FB 7
	Prof.Dr.habil, Künne

Konstruktionselemente / Mas

ch	ine	ene	lem	ent	e	

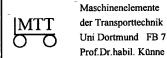
J	K.	l. E	
TL.	3	meh00.02	BL

Fachprüfung	

me:	Kü	nne/l	Mita	ırbeı

Name:	MatrNr.:	

Aufgabe	E-WL	(Wälzlager)

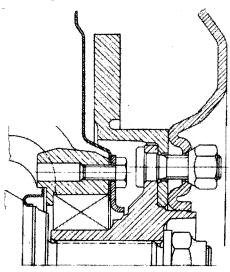

Teilaufg.	E_WL_1	E_WL_2	E_WL_3	E_WL_4	Summe
Max. Pktzahl	3	2	2	3	10
Erreichte Pktzahl					

Wälzlager

1. Kreuzen Sie an für welche der folgenden Anforderungen die genannten Wälzlagerarten geeignet sind. Radialbelastung Axialbelastung Zerlegbar Hohe Belastbarkeit

Rillenkugellager		
Pendelkugellager		
Zylinderrollenlager, ohne Borde		
Axial- Rillenkugellager		
UKF-Kugellager		

2. Für welche Lagerungen sind Wälzlager den Gleitlagern vorzuziehen? Nennen sie Einsatzbeispiele.


Konstruktionselemente / Maschinenelemente

Kl. E E_WL_3 meh00.02 Bl. 2 v. 2 Künne/Mitarbeiter

3. Nennen Sie mindestens zwei Gründe, warum zunächst Rillenkugellager bei der Lagerwahl berücksichtigt werden sollten.

Fachprüfung

4. Wählen Sie für die abgebildete Lagerung eines angetriebenen und gelenkten PKW Vorderrades eine geeignete Wälzlagerbauform aus der Liste aus. Begründen Sie Ihre Wahl und skizzieren Sie grob die Wälzlagerbauform.

Bauformen:

Rillenkugellager, einreihig Schrägkugellager, einreihig Schrägkugellager, zweireihig Vierpunktlager Pendelkugellager Zylinderrollenlager Nadellager Kegelrollenlager Tonnenlager Pendelrollenlager

	Maschinenelemente	Konstruktionselemen	te / Maschinenel	emente	Kl. E	
O O	der Transporttechnik Uni Dortmund FB 7 Prof.Dr.habil. Künne	Fachprüfung			E_SW_2 tom02.00 Name: Künne/I	0 Bl. 1 v. 2 Mitarbeiter
Name:			MatrNr.	••		
Die folger	-SW (Schweißver	d in den links darg	estellten Version	nen nicht so	ax. Pktzahl rreichte Pktzahl chweißgerech	E-SW 2 8
Gestalten S	Sie die Bauteile in	den rechts dargestellte	n Versionen schv	weißgerecht.		
		·		9		
	XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					

Kl. E Konstruktionselemente / Maschinenelemente Maschinenelemente der Transporttechnik E_SW_2 tom02.00 Bl. 2 v. 2 Uni Dortmund FB 7 Fachprüfung Name: Künne/Mitarbeiter Prof.Dr.habil. Künne

- 13	ra-r	Maschinenelemente der Transporttechnik		Kl. E						
O	TT O	Uni Dortmund FB 7 Prof.Dr.habil. Künne	Fachprüfung						FE_3_bre0001 ame: Künne	Bl. 1 v. 2 /Mitarbeiter
Nan	1e:				N	/latrNr.:				
Auf	gabe l	E-FE (Federn)								
	9	,	Teilaufg.	E-FE.1	E-FE.2	E-FE.3	E-FE.4	E-FE.	.5 E-FE.6	Summe
			Max. Pktzahl	1	1	4	1	1	1	9
			Erreichte Punktzahl							
zuge Die	hörige Feder	erte Aufbau, der z e Federkennlinie de wege der Schraub der Schraubenfede	es Systems sind en- und der T	d bekannt ellerfeder imal a =	(s. u.). ranordnu	ing werd	len durcl	n Ans	chläge be	grenzt. Der
F()	N)	Anschlag			Ansch	Anec	↓ b			
							<i>T</i>			
						1 /				
					Signatura de la companya de la comp					
		\ \text{\text{\$\sigma}}								
					7		· .			
			\c				s ((mm))	
		5	10	15	18,7	520	25	•		

	Maschinenelemente	Konstruktionselemente / Maschinenelemente	Kl. E
O O	der Transporttechnik Uni Dortmund FB 7 Prof.Dr. habil. Künne	Fachprüfung	E_FE_3_bre0001 Bl. 2 v. 2 Name: Künne/Mitarbeiter
E-FE.1		Gederkonstante des Gesamtsystems, solange keiner	der Anschläge erreicht
E-FE.2	Wie groß ist die wurde?	Federkonstante des Gesamtsystems nachdem der	erste Anschlag erreicht
E-FE.3	Nach Erreichen de Tellerfederanordni	s Gesamtfederweges s = $18,75$ mm beträgt a = 0 n ing federt.	nm, so dass nur noch die
	3.1 Tragen Sie die	e Kennlinie der Tellerfederanordnung in das Diagra	mm ein
	3.2 Tragen Sie die	e Kennlinie der Schraubenfederanordnung in das Di	iagramm ein
E-FE.4	Um welchen Typ	von Federkennlinie handelt es sich bei der Gesamta	nordnung ?
E-FE.5	Warum dürfen S Windungen aufeir	chraubendruckfedern nicht so stark zusammenge nander zu liegen kommen?	drückt werden, dass die
E-FE.6	Bei der Parallelsc	folgende Aussage (Nichtzutreffendes bitte streicher haltung von Federn wird das Federsystem [härter] er einzelnen Federwege] [ist für alle Federn derselbe	[weicher]. Der Federweg

O O	der Transporttechnik Uni Dortmund FB 7 Prof.Dr. habil. Künne	
Name:		
A C. I. I	E -ZR (Zahnräde	٠

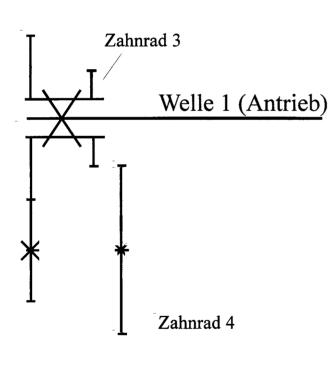
Konstruktionselemente / Maschinenelemente Fachprüfung

E ZR 4 bre0002 Bl. 1 v. 5 Künne/Mitarbeiter Name:

Kl. E

E-ZR.1

Achsabstand a mit 100 mm festgelegt.


Teilaufg.	E-ZR.1	E-ZR.2	E-ZR.3	E-ZR.4	E-ZR.5	E-ZR.6	Summe
Max. Pktzahl	1	3	0,5	2	1,5	2	10
Erreichte Punktzahl							

Matr.-Nr.:

Zur Einhaltung der Übersetzungsvorgabe für den Gang II wurden Zähnezahlen von z_3 = 15 und z_4 = 67 (m = 2,5 mm) ausgewählt. Der festgelegte Achsabstand läßt den Einsatz einer Nullverzahnung für den Gang II nicht zu. Es soll

Im Rahmen der Auslegung eines 2-Gang-Schaltgetriebes wurde der Gang I bereits ausgelegt und der

daher eine Anpassung durch Profilverschiebung vorgenommen werden.

Berechnen Sie den theoretischen Achsabstand a_{th} für den Gang II (Hinweis: x = 0)

LI ACCOR	Maschinenelemente	Konstruktionselemente / Maschinenelemente	Kl. E
0 0	der Transporttechnik Uni Dortmund FB 7 Prof.Dr.habil, Künne	Fachprüfung	E_ZR_4_bre0002 Bl. 2 v. 5 Name: Künne/Mitarbeiter
E-ZR.2	Berechnen Sie die Anlage zu dieser A	Profilverschiebungssumme! (Die notwendigen Fo Aufgabe. Sollten Sie keine Lösung ermitteln könner ssumme von - 0,9 weiter)	
E-ZR.3	Teilen Sie die Profi	ilverschiebungssumme so auf, dass $x_3 = -0.6$ beträg	t.
E-ZR.4		o die ermittelten Profilverschiebungen für die Zahr härtet). Begründen Sie Ihr Ergebnis!	aräder 3 und 4 zulässig
E-ZR.5	Berechnen Sie Teil	kreis-, Fußkreis- und Kopfkreisdurchmesser für das	Zahnrad 3
E-ZR.6		ch die Zahnformen bei positiver bzw. negative Form der Zahnflanke sowie Kopf- und Fußbreite de	

M	TT
D	$\overline{}$

Maschinenelemente der Transporttechnik Uni Dortmund FB 7

Prof.Dr.habil. Künne

Konstruktionselemente / Maschinenelemente

Fachprüfung

Kl. E

Bl. 3 v. 5 E_ZR_4_bre0002 Künne/Mitarbeiter Name:

Formeln:

$$\cos \alpha_{\rm w} = \frac{\left(z_1 + z_2\right) \cdot m}{2 \cdot a} \cdot \cos \alpha$$

 $\alpha_{\mathbf{w}}$ = Betriebseingriffswinkel z = Zähnezahl

Index 1= Ritzel

Index 2= Großrad

= Modul

= Achsabstand

= Eingriffswinkel = 20°

inv
$$\alpha_{w} = \frac{2 \cdot (x_1 + x_2) \cdot \tan \alpha}{z_1 + z_2} + \text{inv } \alpha$$

 $\begin{array}{ll} \text{inv } \alpha_{\mathbf{w}} &= (\text{sprich "involut } \alpha_{\mathbf{w}}") \text{ Evolventen funktion} \\ x &= \text{Profilverschiebungs faktor} \end{array}$

= Eingriffswinkel = 20°

= Zähnezahl

Index 1 = Ritzel

Index 2 = Großrad

$$x_1 + x_2 = (z_1 + z_2) \cdot \frac{\text{inv } \alpha_{w} - \text{inv } \alpha}{2 \cdot \tan \alpha}$$

 $x_1 + x_2 = Profilverschiebungssumme$

Konstruktionselemente / Maschinenelemente

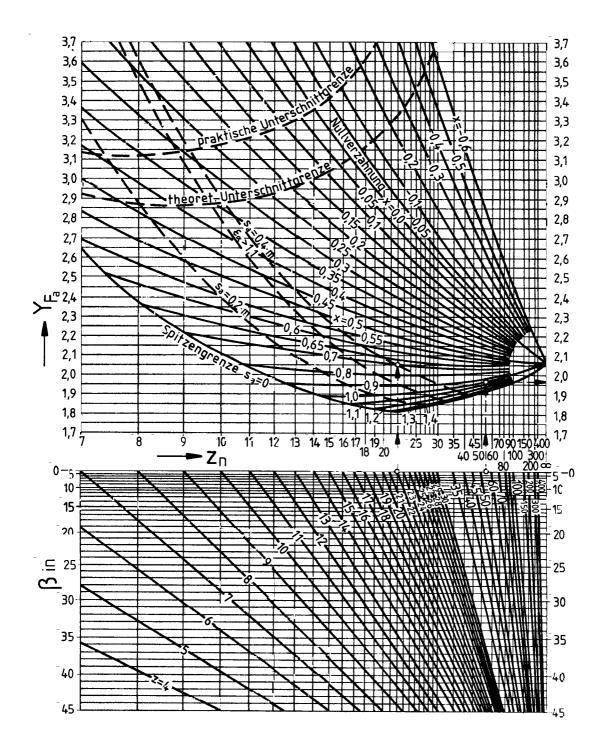
Fachprüfung

Kl. E

E_ZR_4_bre0002 Bl. 4 v. 5 Name: Künne/Mitarbeiter

Evolventenfunktion:

α in	,0	,1	,2	-,3	,4	,5	,6	,7	,8	,9
0	,	,	,	,	,	,	,	,	,	,
10	0,0017941	0,0018489	0,0019048	0,0019619	0,0020201	0,0020795	0,0021400	0,0022017	0,0022646	0,0023288
11	0,0023941	0,0024607	0,0025285	0,0025975	0,0026678	0,0027394	0,0028123	0,0028865	0,0029620	0,0030389
12	0,0031171	0,0031966	0,0032775	0,0033598	0,0034434	0,0035285	0,0036150	0,0037029	0,0037923	0,0038831
13	0,0039754	0,0040692	0,0041644	0,0042612	0,0043595	0,0044593	0,0045607	0,0046636	0,0047681	0,0048742
14	0,0049819	0,0050912	0,0052022	0,0053147	0,0054290	0,0055448	0,0056624	0,0057817	0,0059027	0,0060254
15	0,0061498	0,0062760	0,0064039	0,0065337	0,0066652	0,0067985	0,0069337	0,0070706	0,0072095	0,0073501
16	0,0074927	0,0076372	0,0077835	0,0079318	0,0080820	0,0082342	0,0083883	0,0085444	0,0087025	0,0088626
17	0,0090247	0,0091889	0,0093551	0,0095234	0,0096937	0,0098662	0,0100407	0,0102174	0,0103963	0,0105773
18	0,010760	0,010964	0,011133	0,011323	0,011515	0,011709	0,011906	0,012105	0,012306	0,012509
19	0,012715	0,012923	0,013134	0,013346	0,013562	0,013779	0,013999	0,014222	0,014447	0,014674
20	0,014904	0,015137	0,015372	0,015609	0,015850	0,016092	0,016337	0,016585	0,016836	0,017089
21	0,017345	0,017603	0,017865	0,018129	0,018395	0,018665	0,018937	0,019212	0,019490	0,019770
22	0,020054	0,020340	0,020629	0,020921	0,021217	0,021514	0,021815	0,022119	0,022426	0,022736
23	0,023049	0,023365	0,023684	0,024006	0,024332	0,024660	0,024992	0,025326	0,025664	0,026005
24	0,026350	0,026697	0,027048	0,027402	0,027760	0,028121	0,028485	0,028852	0,029223	0,029600
25	0,029975	0,030357	0,030741	0,031129	0,031521	0,031916	0,032315	0,032718	0,033124	0,033534
26	0,033947	0,034364	0,034785	0,035209	0,035637	0,036069	0,036505	0,036945	0,037388	0,037835
27	0,038287	0,038742	0,039201	0,039664	0,040131	0,040602	0,041076	0,041556	0,042039	0,042526
28	0,043017	0,043513	0,044012	0,044516	0,045024	0,045537	0,046054	0,046575	0,047100	0,047630
29	0,048164	0,048702	0,049245	0,049792	0,050344	0,050901	0,051462	0,052027	0,052597	0,053172
30	0,053751	0,054336	0,054924	0,055518	0,056116	0,056720	0,057328	0,057940	0,058558	0,059181
31	0,059809	0,060441	0,061079	0,061721	0,062369	0,063022	0,063680	0,064343	0,065012	0,065685
32	0,066364	0,067048	0,067738	0,068432	0,069133	0,069838	0,070549	0,071266	0,071988	0,072716
33	0,073449	0,074188	0,074932	0,075683	0,076439	0,077200	0,077968	0,078741	0,079520	0,080306
34	0,081097	0,081894	0,082697	0,083506	0,084321	0,085142	0,085970	0,086804	0,087644	0,088490
35	0,089342	0,090201	0,091067	0,091938	0,092816	0,093701	0,094592	0,095490	0,096395	0,097306
36	0,098224	0,099149	0,100080	0,101019	0,101964	0,102916	0,103875	0,104841	0,105814	0,106795
37	0,107782	0,108777	0,109779	0,110788	0,111805	0,112829	0,113860	0,114899	0,115945	0,116999
38	0,118061	0,119130	0,120207	0,121291	0,122384	0,123484	0,124592	0,125709	0,126833	0,127965
39	0,129106	0,130254	0,131411	0,132576	0,133750	0,134931	0,136122	0,137320	0,138528	0,139743
40	0,140968	0,142201	0,143443	0,144694	0,145954	0,147222	0,148500	0,149787	0,151083	0,152388
41	0,153702	0,155025	0,156348	0,157700	0,159052	0,160414	0,161785	0,163165	0,164556	0,165956
42	0,167366	0,168786	0,170216	0,171656	0,173106	0,174566	0,176037	0,177518	0,179009	0,180511
43	0,182024	0,183547	0,185080	0,186625	0,188180	0,189746	0,191324	0,192912	0,194511	0,196122
44	0,197744	0,199377	0,201022	0,202678	0,204346	0,206026	0,207717	0,209420	0,211135	0,212863
45	0,21460	0,21635	0,21812	0,21989	0,22168	0,22348	0,22530	0,22712	0,22896	0,23081
46	0,23268	0,23456	0,23645	0,23835	0,24027	0,24220	0,24415	0,24611	0,24808	0,25006
47	0,25206	0,25408	0,25611	0,25815	0,26021	0,26228	0,26436	0,26646	0,26858	0,27071
48	0,27285	0,27501	0,27719	0,27938	0,28159	0,28381	0,28605	0,28830	0,29057	0,29286
49	0,29516	0,29747	0,29981	0,30216	0,30453	0,30691	0,30931	0,31173	0,31417	0,31663


Konstruktionselemente / Maschinenelemente

Fachprüfung

Kl. E

E_ZR_4_bre0002 Bl. 5 v. 5

Künne/Mitarbeiter Name:

Aufoshe F	E-RK (Riemen und Ketten)	Teilaufg.	E-RK 1	E-RK 2	E-RK 3	Summe
inigane i	2 III (Idomon and Izonon)	Max. Pktzahl	1	-4	-4	- 9
		Erreichte Punktzahl				
_	et der skizzierte Flachriementrieb. Die latät a), die rechte Scheibe ist zentrisch g		scheibe ist	exzentrisc	h gelagert	
		A	- Antrie	eb		
Daten:	- ,	R	X		R	
Wirkradius	$R = 100 \mathrm{mm}$		/			\
Reibbeiwe	$\mu = 0.4 \qquad B \downarrow$	re l				
			7			
E-RK 1	Welche Drehrichtung (A oder B) ist zu ermöglichen?	u wählen, um	eine Selbs	stspannung	g des Riem	ens zu
E-RK 2	Wie groß muss die Exzentrizität a mir des Riemens möglich ist?	ndestens gew	ählt werde	n, damit ke	ein Durchr	utschen

Konstruktionselemente / Maschinenelemente

Matr.-Nr.:

Fachprüfung

Kl. E

Bl. 1 v. 1

Künne/Mitarbeiter

E_RK_4 kle00.02

Name:

Maschinenelemente

der Transporttechnik

Uni Dortmund FB 7

Prof.Dr.habil. Künne

Name:

E-RK 3

Wie groß ist die auf die Achse wirkende Kraft F_A , wenn ein Drehmoment von $M=100~\mathrm{Nm}$ übertragen wird und die Exzentrizität a=60 mm beträgt?

MTT O O	Maschinenelemente der Transporttechnik Uni Dortmund FB 7 Prof.Dr.habil. Künne
Name	

Fachprüfung

Konstruktionselemente / Maschinenelemente

Matr.-Nr.:

E_KB_4 kle00.02 Künne/Mitarbeiter Name:

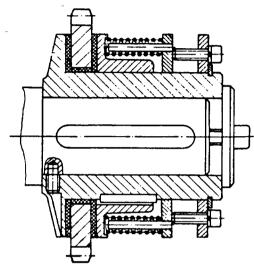
Kl. E

Bl. 1 v. 1

Teilaufg.	E-KB 1	E-KB 2	E-KB 3	E-KB 4	Summe
Max. Pktzahl	2	2	1	3	-8
Erreichte Punktzahl					

Gegeben ist nebenstehende Kupplung. Die Kupplung wird mit einer Passfeder direkt auf eine Motorwelle aufgesetzt. Über das Kettenrad wird eine Förderkette angetrieben.

Daten:


E-KB3

Aufgabe E-KB (Kupplungen)

mittlerer Reibradius: $r_{\rm m} = 100 \, \rm mm$ Reibbeiwert: $\mu = 0.3$

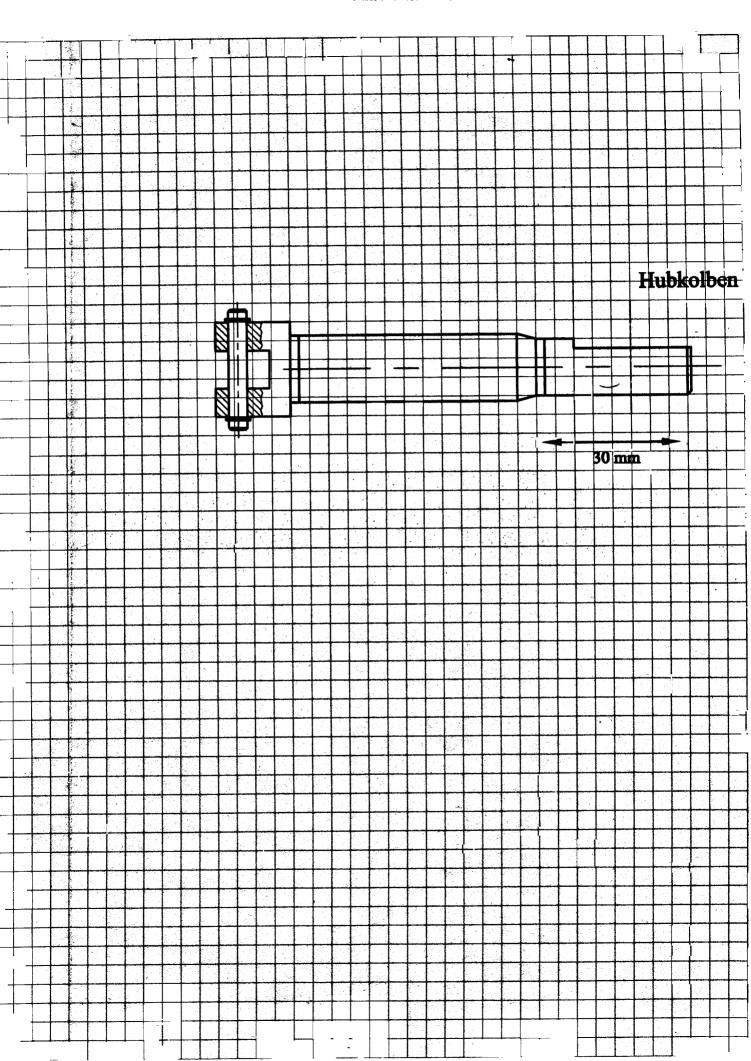
FB 7

Gesamtvorspannkraft: $F_S = 1000 \text{ N}$

Wofür dient die Kupplung? Beschreiben Sie kurz die Funktionsweise. E-KB 1

E-KB 2 Berechnen Sie das von der Kupplung übertragbare Moment.

E-KB 4 Nennen Sie jeweils ein Beispiel für die folgenden Kupplungstypen.


Kann diese Kupplung als Anlaufkupplung eingesetzt werden? Begründung!

- a) reibschlüssige Schaltkupplung:
- b) drehelastische Ausgleichskupplung:
- c) starre Kupplung:
- d) stoffschlüssige Sicherheitskupplung:
- e) reibschlüssige Freilaufkupplung:
- f) Schlupfkupplung:

MTT	Maschinenelemente der Transporttechnik	lemente	Kl. E E_GG meh00.02 I	Rl. 1 v. 2	
00	Uni Dortmund FB 7 Prof.Dr.habil. Künne	Fachprüfung			litarbeiter
Name:		MatrNr	• •		
Aufgabe E	-GG (Getriebe)	:	Teilaufg. Max. Pktzahl	E-GG	Summe
77 , 1 ,			Erreichte Pktzahl	47	
Auf dem konstruiere auszuführe – Die Vor – Fest-Los – Welle se aufnehn – Gehäuse – Anordne – Der Aus – Der Aus Die Sch – Der Au abzudic – Gehäuse	en. Die Konstrukten. Berücksichtigen richtung ist ölgescher selbe selbe am Ende eine Kooll eine Vorrichten. Beteilung gemäß Skillung der Füße gemäßtrittskolben soll einstrittskolben ist miraubenverbindung astrittskolben ist hten. Beist entweder als ruktion Sie gewing sie strick selben solle strick selben ist hten.	iß Skizze. ne Hubbewegung von 30 mm (± 15 mm) t einer Schraubenverbindung zur Aufnitst detailliert darzustellen. geeignet gegen das Eindringen von Guss- oder Schweißkonstruktion zu g	pskizze freihänschraube. und Sicherung fnehmen. n in eine tran m) ausführen. ahme einer Schnutz in gestalten. (Ge	gsblech. Inslatorische lehubstange zu In das Getrie	Bewegung versehen. begehäuse

,		Maschinenelemente							e		·	Konstruktionselemente / Maschinenelemente											K	[].	 E	,						Name:			e:							
		M'	TT	•		er Ti Ini D					Ï														E-GG meh0002 Bl. 2 v. 2 Name: Künne/Mitarbeiter																	
	_	ر) —		rof.l					_	Fa	ich	prü	tur	ıg	_	,		1		_							- 1	N:	ıme:	1	Cunn	e/Mi	tarb	enter	-		Т	Τ	-	Γ
_		Ι	-	1	+	+	+		-	1					-	-		\vdash	+	+	\dashv	+	\dashv	-	+	\dashv	\dashv			+	\dashv	\dashv	\dashv		-				\vdash	_	\top	+
		-	+	+	+	+	\dashv	\dashv	\dashv	-						\vdash	<u> </u>	-	+	+	\dashv	\dashv	\dashv			\top	\dashv	1	寸	\dashv	1											
			+	+	+	\dashv	+											1	1				\Box															_	L	_	<u> </u>	
	-				1													floor	\rfloor			\perp		\perp		4		_	_		4	-	\dashv	-		-		-	\perp	T		_
			\bot											_		-	_	_	1	4	-	-	\dashv	+	-+	4	-	\dashv			\dashv	\dashv					-	-	+	+	T	7
		L	\bot	\perp	\downarrow	\dashv	\dashv	-				-	_	-	-	+	1	+	+	\dashv	-	\dashv	-	-	+	\dashv		\dashv			-	\dashv	\dashv			_			1	+	+	
		-	+	+	+	+	\dashv					-	\vdash	-	\vdash	+	+	+	+	\dashv	\dashv	-			+	7														I		
		\dagger	+	+	十	\dashv	\dashv						\vdash	1		+-	T		1																	L	_	-	_	\downarrow	_	\neg
			I															I								\dashv			_		_			-	_	_	-		+	-	+	+
															L	-	-	-	4	\dashv			-			-			\vdash						-	-	-	-	+	+	+	
		-	+	\downarrow	\dashv	-			_	-	-	1	\vdash	-	+	+	+	+	+	\dashv	\dashv	\dashv							-	H					-		1	T	+	\dagger		
-		+	+	+				_	-	\vdash	-	-	+	+	+	+	+	+	+										-													
-		1	+	\dashv	\dashv	\dashv						\dagger		+	†	+	+	+	1																					-		
		T	T	_													I	1											_					_	-	-	-	1	+	+	-	-+
		I						Ĺ.,	L			1		1	\perp	1	1	1	_									_	-						-	\vdash	+	+	+	1	-	- +
-	_	1	+	-	_				-	+	-	+	+	+	+	+	+	+	-			,					-	-	-	-		-	-	\vdash	\vdash	-	+	\dagger	+	+		
-	_	+	+	\dashv	_		-	\vdash	\vdash	\vdash	╁	+	+	+	+	+	+	+									-	-	-	\Box			-		T			T				
		\dagger	+	1			-		+	+	\dagger	+	\dagger	+	+	\dagger	\dagger	1																			I	I	\perp			
<u></u>		\dagger	+	\dashv		_						\perp	I	I														L	L			_	<u> </u>	,	-	-	-	+	_	4		-
		4												1	1	\perp	1	\downarrow	_		_	_		<u> </u>			-	-	_	-	-		-	-	┼-	+	+-	+	+	+		-
_		1	_					1	1	-	\perp	-	+	\perp	+	+	+	1						-	-	_	\vdash	-	╁╴	-		-	\vdash	-	T	+		\dagger	+	+		
		+	\dashv			-		\vdash	+	+	+	+	+			+		+				-						\vdash	+	T				-			+	1				
-	H	+						+	\dagger		\dagger	+	†	\dagger	+	+	+	1																					\perp	\downarrow		
	İ	1			,								I																	_	_	 _	_	1	1	1	-	1	+	+		
									\bot		\perp			1	1	4	4			_	<u> </u>	_	_	-	-	-	-	\vdash	+	+		\vdash	\vdash	\vdash	+	+	+	+	\dashv	\dashv		
	+	+	\dashv			_	-	-	+	\bot	+	+	+	+	+	+	+				-	-	-	-	-	\vdash	╁	+	+	╁	╁╴	┢	╁	十	╁	+	+	+	十			_
	-	+	-		_	\vdash	\vdash	+	╁	+	+	+	+	+	+	+	+	-		-	\vdash	\vdash	1	-	1	\dagger	\dagger	\dagger	+	\dagger		T	T	T	1							
-	\dagger	+	1			 	\vdash	T	\top	+	\dagger	1	+	\top	1	1	1																			I						
									I	I					\perp								_	L	L		_	\perp	\downarrow	1	_	_	-	\bot	1	4	_	+	4			
<u> </u>	Ţ	\perp	\Box				1	1	1	1	1	1	1	4	4	\dashv	4	_		_	-	-	+	+	+	-	+	+	+	+	+	-	+	+	+	+	+	+	+	\dashv	à.	
_	 	\perp	_		-	-	-	+	+	+	+	+	+	+	+	+	+	-		-	+	+	\vdash	+	+	+	+	+	+	\dagger	+	+	+	+		+	\dagger	\dagger	\forall	\dashv		
-	-	\dashv	_		-	+	+	+	+	+	+	+	+	+	+	\dashv	\dashv				T		1	1	+	1	1	1	1	1	1	T	I		I	I	I	1				
	-	+					T	†	1		1	T												I	I	I	I	1		\bot			L		T	1	1	1	_[Ш
	1					I		I			I	\Box	Ţ		1	\Box	\Box				L	1		1	1	1	1	1	1	+	1	1	1	+	+	+	+	+	\dashv	\dashv		
	1	_		_	<u> </u>		4	1		-	4	\downarrow	\downarrow	\perp	4		\dashv	-	-	\vdash	+	+	+	-		+	+	+	+	+	+	╀	+-	+	+	+	+	+	+		-	_
-	+	-		-	\vdash	+	+	+	+	+	+	+		\dashv	\dashv	\dashv	\dashv			1	+	+	+	+	+	+	+	1	+	1	+	T	+	+	+	+	+	+				
L	+	\dashv		-	+	+	+	+	+	+	+	\dashv	+	1	+	\dashv	1	4.3		1	1	+	+	+	+	1	1	1	丁	1	I	1		1	I							<u> </u>
	-	\dashv			1	1	T	T	1					1							I			I	I	I	I	\perp	I	\perp	$oldsymbol{I}$	$oldsymbol{\mathbb{L}}$		\perp		\int	1		_		 	
					L			m I			\perp		\prod	$oxed{oxed}$	\int	\bot				_	1	1	-	1	\downarrow	1	_	\bot	-	+	+	1	4	+	+	+	\dashv	\dashv	\dashv	-	-	
-	1			L	-	1	+	1	+	4	4	+	4	_	4	\dashv	-		H	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	\dashv		-	
	+	-		-	+	+	+	+	-		-+-	+	\dashv	\dashv	-	\dashv		1.5	-	+	+	+	+	+		+	+	+	+	+	+	+	+	+	\dagger	+	1	1	\dashv		T	
T.	+	_		\vdash	+	+	+	+	\perp	+	+	\dashv	P	\dashv	3	1			\vdash	+	+	+	+	+	+	1	+	1	1	T		1	1	1	丁							
F	+				\dagger		_		_	+	1		_								I							I	Ţ	I			$oldsymbol{\mathbb{T}}$	\perp	I			\downarrow		<u>.</u>	1	
<u>-</u>	<u> </u>				•			-			1			\Box							\perp		↓			_			- 1	4	1_	1	\perp		_i	_ •	1			_		-
	+		l	•																										_1_	1	L					1	ı				<u>L</u>

Matrikel-Nr.

